基于先进元启发式算法的增强损伤耦合粘塑性本构模型自动参数反演

IF 4.2 2区 工程技术 Q1 MECHANICS
Qiaofa Yang, Wei Zhang, Kangshuo Zhang, Fei Liang, Le Chang, Xiaohua He, Changyu Zhou
{"title":"基于先进元启发式算法的增强损伤耦合粘塑性本构模型自动参数反演","authors":"Qiaofa Yang,&nbsp;Wei Zhang,&nbsp;Kangshuo Zhang,&nbsp;Fei Liang,&nbsp;Le Chang,&nbsp;Xiaohua He,&nbsp;Changyu Zhou","doi":"10.1016/j.euromechsol.2025.105756","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate prediction of high-temperature component behavior under low-cycle fatigue (LCF) and creep-fatigue interaction (CFI) conditions requires an advanced constitutive model and a robust parameter identification approach. This study introduces a damage-coupled unified viscoplastic constitutive model (UVCM) incorporating cyclic softening, transient Bauschinger effects, and strain range dependency to characterize life-cycle deformation behavior. To overcome limitations in traditional parameter calibration, a metaheuristic black-winged kite algorithm (MBKA) is developed by combining hybrid initialization strategies, swarm diversity-driven adaptation, and golden sine search. Simulation results indicate that MBKA exhibits superior convergence accuracy over tested renowned algorithms in solving 23 CEC2005 functions, practically in multimodal optimization scenarios. When applied to 2.25CrMoV steel at 455 °C, the UVCM-MBKA framework successfully replicates the observed experimental phenomena, including strain amplitude-dependent cyclic deformation, transient Bauschinger effects, dwell time-induced decelerated stress relaxation, and directional sensitivity of CFI. Furthermore, the model demonstrates accurate fatigue life prediction across 16 experimental cases, with numerical results closely matching observed continuous cyclic softening and three-stage decelerated relaxation. Validation confirms the framework's precision and robustness in predicting cyclic deformations and fatigue life.</div></div>","PeriodicalId":50483,"journal":{"name":"European Journal of Mechanics A-Solids","volume":"114 ","pages":"Article 105756"},"PeriodicalIF":4.2000,"publicationDate":"2025-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced damage-coupled viscoplastic constitutive modeling with advanced meta-heuristic algorithm-based automated parameter inversion\",\"authors\":\"Qiaofa Yang,&nbsp;Wei Zhang,&nbsp;Kangshuo Zhang,&nbsp;Fei Liang,&nbsp;Le Chang,&nbsp;Xiaohua He,&nbsp;Changyu Zhou\",\"doi\":\"10.1016/j.euromechsol.2025.105756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate prediction of high-temperature component behavior under low-cycle fatigue (LCF) and creep-fatigue interaction (CFI) conditions requires an advanced constitutive model and a robust parameter identification approach. This study introduces a damage-coupled unified viscoplastic constitutive model (UVCM) incorporating cyclic softening, transient Bauschinger effects, and strain range dependency to characterize life-cycle deformation behavior. To overcome limitations in traditional parameter calibration, a metaheuristic black-winged kite algorithm (MBKA) is developed by combining hybrid initialization strategies, swarm diversity-driven adaptation, and golden sine search. Simulation results indicate that MBKA exhibits superior convergence accuracy over tested renowned algorithms in solving 23 CEC2005 functions, practically in multimodal optimization scenarios. When applied to 2.25CrMoV steel at 455 °C, the UVCM-MBKA framework successfully replicates the observed experimental phenomena, including strain amplitude-dependent cyclic deformation, transient Bauschinger effects, dwell time-induced decelerated stress relaxation, and directional sensitivity of CFI. Furthermore, the model demonstrates accurate fatigue life prediction across 16 experimental cases, with numerical results closely matching observed continuous cyclic softening and three-stage decelerated relaxation. Validation confirms the framework's precision and robustness in predicting cyclic deformations and fatigue life.</div></div>\",\"PeriodicalId\":50483,\"journal\":{\"name\":\"European Journal of Mechanics A-Solids\",\"volume\":\"114 \",\"pages\":\"Article 105756\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Mechanics A-Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0997753825001901\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics A-Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997753825001901","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

在低周疲劳(LCF)和蠕变-疲劳相互作用(CFI)条件下准确预测高温构件的行为需要先进的本构模型和鲁棒的参数识别方法。本研究引入了一种损伤耦合的统一粘塑性本构模型(UVCM),该模型结合了循环软化、瞬态包辛格效应和应变范围依赖性来表征生命周期变形行为。针对传统参数标定方法的局限性,结合混合初始化策略、群体多样性驱动自适应和黄金正弦搜索,提出了一种元启发式黑翼风筝算法(MBKA)。仿真结果表明,MBKA在求解23个CEC2005函数时,在实际的多模态优化场景中,比经过测试的知名算法具有更高的收敛精度。当应用于2.25CrMoV钢在455°C时,UVCM-MBKA框架成功地复制了观察到的实验现象,包括应变幅值相关的循环变形、瞬态包辛格效应、停留时间诱导的减速应力松弛和CFI的方向灵敏度。此外,该模型对16个实验案例的疲劳寿命进行了准确的预测,数值结果与观察到的连续循环软化和三级减速松弛非常吻合。验证验证了该框架在预测循环变形和疲劳寿命方面的精度和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced damage-coupled viscoplastic constitutive modeling with advanced meta-heuristic algorithm-based automated parameter inversion
Accurate prediction of high-temperature component behavior under low-cycle fatigue (LCF) and creep-fatigue interaction (CFI) conditions requires an advanced constitutive model and a robust parameter identification approach. This study introduces a damage-coupled unified viscoplastic constitutive model (UVCM) incorporating cyclic softening, transient Bauschinger effects, and strain range dependency to characterize life-cycle deformation behavior. To overcome limitations in traditional parameter calibration, a metaheuristic black-winged kite algorithm (MBKA) is developed by combining hybrid initialization strategies, swarm diversity-driven adaptation, and golden sine search. Simulation results indicate that MBKA exhibits superior convergence accuracy over tested renowned algorithms in solving 23 CEC2005 functions, practically in multimodal optimization scenarios. When applied to 2.25CrMoV steel at 455 °C, the UVCM-MBKA framework successfully replicates the observed experimental phenomena, including strain amplitude-dependent cyclic deformation, transient Bauschinger effects, dwell time-induced decelerated stress relaxation, and directional sensitivity of CFI. Furthermore, the model demonstrates accurate fatigue life prediction across 16 experimental cases, with numerical results closely matching observed continuous cyclic softening and three-stage decelerated relaxation. Validation confirms the framework's precision and robustness in predicting cyclic deformations and fatigue life.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.00
自引率
7.30%
发文量
275
审稿时长
48 days
期刊介绍: The European Journal of Mechanics endash; A/Solids continues to publish articles in English in all areas of Solid Mechanics from the physical and mathematical basis to materials engineering, technological applications and methods of modern computational mechanics, both pure and applied research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信