Yi-Min Wei , An Qiu , Jingchao Wang , Yu Gu , Jian-Feng Li
{"title":"锂盐阴离子对peo基固态电解质界面性能的影响","authors":"Yi-Min Wei , An Qiu , Jingchao Wang , Yu Gu , Jian-Feng Li","doi":"10.1016/j.elecom.2025.107979","DOIUrl":null,"url":null,"abstract":"<div><div>The use of poly(ethylene oxide) (PEO)-based solid-state electrolytes have shown potential to improve both the energy density and safety performance of lithium-metal batteries. However, these electrolytes often form unstable interfaces with lithium metal anodes, compromising the durability and sustained performance of solid-state lithium-metal batteries. In this study, three lithium salts, lithium (fluorosulfonyl) (trifluoromethanesulfonyl)imide (LiFTFSI), lithium bis(fluorosulfonyl)imide (LiFSI), and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), were each mixed in equimolar ratios with tetraethylene glycol dimethyl ether (G4) and introduced as a conductivity enhancer in PEO-based solid-state electrolytes. The effects of the lithium salt anions on the electrolyte properties were systematically investigated. Among the three, the fluorosulfonyl group was found to enhance ionic conductivity, while the trifluoromethanesulfonyl group improved thermal stability. Notably, the synergistic interaction between these two groups in LiFTFSI led to the formation of a stable solid-electrolyte interphase (SEI), characterized by a higher content of inorganic species and reduced organic components. As a result, LiFTFSI/G4-based solid-state electrolytes enabled stable cycling for 200 cycles at a 0.5C rate in LiFePO<sub>4</sub>-based solid-state lithium-metal batteries, achieving a capacity retention of 91 %. This study provides valuable insights into the optimization of high-efficiency solid-state lithium-metal batteries by elucidating the distinct roles of lithium salt anions.</div></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"177 ","pages":"Article 107979"},"PeriodicalIF":4.2000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of lithium salt anions on the interfacial properties of PEO-based solid-state electrolytes\",\"authors\":\"Yi-Min Wei , An Qiu , Jingchao Wang , Yu Gu , Jian-Feng Li\",\"doi\":\"10.1016/j.elecom.2025.107979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The use of poly(ethylene oxide) (PEO)-based solid-state electrolytes have shown potential to improve both the energy density and safety performance of lithium-metal batteries. However, these electrolytes often form unstable interfaces with lithium metal anodes, compromising the durability and sustained performance of solid-state lithium-metal batteries. In this study, three lithium salts, lithium (fluorosulfonyl) (trifluoromethanesulfonyl)imide (LiFTFSI), lithium bis(fluorosulfonyl)imide (LiFSI), and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), were each mixed in equimolar ratios with tetraethylene glycol dimethyl ether (G4) and introduced as a conductivity enhancer in PEO-based solid-state electrolytes. The effects of the lithium salt anions on the electrolyte properties were systematically investigated. Among the three, the fluorosulfonyl group was found to enhance ionic conductivity, while the trifluoromethanesulfonyl group improved thermal stability. Notably, the synergistic interaction between these two groups in LiFTFSI led to the formation of a stable solid-electrolyte interphase (SEI), characterized by a higher content of inorganic species and reduced organic components. As a result, LiFTFSI/G4-based solid-state electrolytes enabled stable cycling for 200 cycles at a 0.5C rate in LiFePO<sub>4</sub>-based solid-state lithium-metal batteries, achieving a capacity retention of 91 %. This study provides valuable insights into the optimization of high-efficiency solid-state lithium-metal batteries by elucidating the distinct roles of lithium salt anions.</div></div>\",\"PeriodicalId\":304,\"journal\":{\"name\":\"Electrochemistry Communications\",\"volume\":\"177 \",\"pages\":\"Article 107979\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochemistry Communications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1388248125001183\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemistry Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388248125001183","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Influence of lithium salt anions on the interfacial properties of PEO-based solid-state electrolytes
The use of poly(ethylene oxide) (PEO)-based solid-state electrolytes have shown potential to improve both the energy density and safety performance of lithium-metal batteries. However, these electrolytes often form unstable interfaces with lithium metal anodes, compromising the durability and sustained performance of solid-state lithium-metal batteries. In this study, three lithium salts, lithium (fluorosulfonyl) (trifluoromethanesulfonyl)imide (LiFTFSI), lithium bis(fluorosulfonyl)imide (LiFSI), and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), were each mixed in equimolar ratios with tetraethylene glycol dimethyl ether (G4) and introduced as a conductivity enhancer in PEO-based solid-state electrolytes. The effects of the lithium salt anions on the electrolyte properties were systematically investigated. Among the three, the fluorosulfonyl group was found to enhance ionic conductivity, while the trifluoromethanesulfonyl group improved thermal stability. Notably, the synergistic interaction between these two groups in LiFTFSI led to the formation of a stable solid-electrolyte interphase (SEI), characterized by a higher content of inorganic species and reduced organic components. As a result, LiFTFSI/G4-based solid-state electrolytes enabled stable cycling for 200 cycles at a 0.5C rate in LiFePO4-based solid-state lithium-metal batteries, achieving a capacity retention of 91 %. This study provides valuable insights into the optimization of high-efficiency solid-state lithium-metal batteries by elucidating the distinct roles of lithium salt anions.
期刊介绍:
Electrochemistry Communications is an open access journal providing fast dissemination of short communications, full communications and mini reviews covering the whole field of electrochemistry which merit urgent publication. Short communications are limited to a maximum of 20,000 characters (including spaces) while full communications and mini reviews are limited to 25,000 characters (including spaces). Supplementary information is permitted for full communications and mini reviews but not for short communications. We aim to be the fastest journal in electrochemistry for these types of papers.