非交换几何中的模向量场

IF 1.2 3区 数学 Q1 MATHEMATICS
Toyo Taniguchi
{"title":"非交换几何中的模向量场","authors":"Toyo Taniguchi","doi":"10.1016/j.geomphys.2025.105565","DOIUrl":null,"url":null,"abstract":"<div><div>We construct a non-commutative analogue of the modular vector field on a Poisson manifold for a given pair of a double bracket and a connection on a space of 1-forms. The key ingredient, the triple divergence map, is directly constructed from a connection on a linear category to deal with multiple base points. As an application, we give an algebraic description of the framed, groupoid version of Turaev's loop operation <em>μ</em> similar to the one obtained by Alekseev–Kawazumi–Kuno–Naef and the author.</div></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":"216 ","pages":"Article 105565"},"PeriodicalIF":1.2000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modular vector fields in non-commutative geometry\",\"authors\":\"Toyo Taniguchi\",\"doi\":\"10.1016/j.geomphys.2025.105565\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We construct a non-commutative analogue of the modular vector field on a Poisson manifold for a given pair of a double bracket and a connection on a space of 1-forms. The key ingredient, the triple divergence map, is directly constructed from a connection on a linear category to deal with multiple base points. As an application, we give an algebraic description of the framed, groupoid version of Turaev's loop operation <em>μ</em> similar to the one obtained by Alekseev–Kawazumi–Kuno–Naef and the author.</div></div>\",\"PeriodicalId\":55602,\"journal\":{\"name\":\"Journal of Geometry and Physics\",\"volume\":\"216 \",\"pages\":\"Article 105565\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometry and Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0393044025001494\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometry and Physics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0393044025001494","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们构造了泊松流形上模向量场的非交换模拟,该模拟是针对给定的双括号和1-形式空间上的连接。其关键成分,三重散度映射,直接从线性范畴上的一个连接构造,以处理多个基点。作为应用,我们给出了类似于Alekseev-Kawazumi-Kuno-Naef和作者所得到的图拉耶夫循环操作μ的框架、群型版本的代数描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modular vector fields in non-commutative geometry
We construct a non-commutative analogue of the modular vector field on a Poisson manifold for a given pair of a double bracket and a connection on a space of 1-forms. The key ingredient, the triple divergence map, is directly constructed from a connection on a linear category to deal with multiple base points. As an application, we give an algebraic description of the framed, groupoid version of Turaev's loop operation μ similar to the one obtained by Alekseev–Kawazumi–Kuno–Naef and the author.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geometry and Physics
Journal of Geometry and Physics 物理-物理:数学物理
CiteScore
2.90
自引率
6.70%
发文量
205
审稿时长
64 days
期刊介绍: The Journal of Geometry and Physics is an International Journal in Mathematical Physics. The Journal stimulates the interaction between geometry and physics by publishing primary research, feature and review articles which are of common interest to practitioners in both fields. The Journal of Geometry and Physics now also accepts Letters, allowing for rapid dissemination of outstanding results in the field of geometry and physics. Letters should not exceed a maximum of five printed journal pages (or contain a maximum of 5000 words) and should contain novel, cutting edge results that are of broad interest to the mathematical physics community. Only Letters which are expected to make a significant addition to the literature in the field will be considered. The Journal covers the following areas of research: Methods of: • Algebraic and Differential Topology • Algebraic Geometry • Real and Complex Differential Geometry • Riemannian Manifolds • Symplectic Geometry • Global Analysis, Analysis on Manifolds • Geometric Theory of Differential Equations • Geometric Control Theory • Lie Groups and Lie Algebras • Supermanifolds and Supergroups • Discrete Geometry • Spinors and Twistors Applications to: • Strings and Superstrings • Noncommutative Topology and Geometry • Quantum Groups • Geometric Methods in Statistics and Probability • Geometry Approaches to Thermodynamics • Classical and Quantum Dynamical Systems • Classical and Quantum Integrable Systems • Classical and Quantum Mechanics • Classical and Quantum Field Theory • General Relativity • Quantum Information • Quantum Gravity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信