耦合物理传输特征值问题及其谱性质及其应用

IF 2.3 2区 数学 Q1 MATHEMATICS
Huaian Diao , Hongyu Liu , Qingle Meng , Li Wang
{"title":"耦合物理传输特征值问题及其谱性质及其应用","authors":"Huaian Diao ,&nbsp;Hongyu Liu ,&nbsp;Qingle Meng ,&nbsp;Li Wang","doi":"10.1016/j.jde.2025.113508","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we investigate a transmission eigenvalue problem that couples the principles of acoustics and elasticity. This problem naturally arises when studying fluid-solid interactions and constructing bubbly-elastic structures to create metamaterials. We uncover intriguing local geometric structures of the transmission eigenfunctions near the corners of the domains, under typical regularity conditions. As applications, we present novel unique identifiability and visibility results for an inverse problem associated with an acoustoelastic system, which hold practical significance.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"441 ","pages":"Article 113508"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a coupled-physics transmission eigenvalue problem and its spectral properties with applications\",\"authors\":\"Huaian Diao ,&nbsp;Hongyu Liu ,&nbsp;Qingle Meng ,&nbsp;Li Wang\",\"doi\":\"10.1016/j.jde.2025.113508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we investigate a transmission eigenvalue problem that couples the principles of acoustics and elasticity. This problem naturally arises when studying fluid-solid interactions and constructing bubbly-elastic structures to create metamaterials. We uncover intriguing local geometric structures of the transmission eigenfunctions near the corners of the domains, under typical regularity conditions. As applications, we present novel unique identifiability and visibility results for an inverse problem associated with an acoustoelastic system, which hold practical significance.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"441 \",\"pages\":\"Article 113508\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625005352\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625005352","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一个耦合声学原理和弹性原理的传输本征值问题。在研究流固相互作用和构建气泡弹性结构以制造超材料时,自然会出现这个问题。在典型的正则性条件下,我们发现了传输本征函数在域角附近的有趣的局部几何结构。作为应用,我们给出了声弹性系统反问题的新颖的唯一可辨识性和可见性结果,具有实际意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a coupled-physics transmission eigenvalue problem and its spectral properties with applications
In this paper, we investigate a transmission eigenvalue problem that couples the principles of acoustics and elasticity. This problem naturally arises when studying fluid-solid interactions and constructing bubbly-elastic structures to create metamaterials. We uncover intriguing local geometric structures of the transmission eigenfunctions near the corners of the domains, under typical regularity conditions. As applications, we present novel unique identifiability and visibility results for an inverse problem associated with an acoustoelastic system, which hold practical significance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信