Ruibo Zhao , Yaru Li , Xinyue Li , Myunghee Kim , Xingjie Li , Shichun Pei , Shuli Man , Weipan Peng , Long Ma
{"title":"基于CRISPR/ cas的SERS检测:与现实世界应用的双赢整合","authors":"Ruibo Zhao , Yaru Li , Xinyue Li , Myunghee Kim , Xingjie Li , Shichun Pei , Shuli Man , Weipan Peng , Long Ma","doi":"10.1016/j.trac.2025.118334","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated nuclease (Cas) system has risen as a powerful tool for genome editing. Beyond its editing capabilities, CRISPR/Cas system has garnered significant interest in molecular diagnostics, especially for nucleic acid detection due to its high sensitivity and specificity. Surface-enhanced Raman spectroscopy (SERS), reliant on plasmonic nanoparticles or nanostructures, was extensively employed in biosensing owing to its exceptional sensitivity and distinctive spectral bands. The integration of SERS with CRISPR/Cas technology led to the development of numerous biosensing approaches aimed at achieving ultra-sensitive detection. This review provided an overview of both the CRISPR/Cas and SERS technology, followed by a comprehensive summary of their combined application for nucleic acid detection. Furthermore, it delved into the current landscape of CRISPR/Cas-based SERS detection, addressing existing challenges and prospects for future advancements.</div></div>","PeriodicalId":439,"journal":{"name":"Trends in Analytical Chemistry","volume":"191 ","pages":"Article 118334"},"PeriodicalIF":11.8000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CRISPR/Cas-based SERS detection: A win-win integration towards real-world applications\",\"authors\":\"Ruibo Zhao , Yaru Li , Xinyue Li , Myunghee Kim , Xingjie Li , Shichun Pei , Shuli Man , Weipan Peng , Long Ma\",\"doi\":\"10.1016/j.trac.2025.118334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In recent years, the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated nuclease (Cas) system has risen as a powerful tool for genome editing. Beyond its editing capabilities, CRISPR/Cas system has garnered significant interest in molecular diagnostics, especially for nucleic acid detection due to its high sensitivity and specificity. Surface-enhanced Raman spectroscopy (SERS), reliant on plasmonic nanoparticles or nanostructures, was extensively employed in biosensing owing to its exceptional sensitivity and distinctive spectral bands. The integration of SERS with CRISPR/Cas technology led to the development of numerous biosensing approaches aimed at achieving ultra-sensitive detection. This review provided an overview of both the CRISPR/Cas and SERS technology, followed by a comprehensive summary of their combined application for nucleic acid detection. Furthermore, it delved into the current landscape of CRISPR/Cas-based SERS detection, addressing existing challenges and prospects for future advancements.</div></div>\",\"PeriodicalId\":439,\"journal\":{\"name\":\"Trends in Analytical Chemistry\",\"volume\":\"191 \",\"pages\":\"Article 118334\"},\"PeriodicalIF\":11.8000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Analytical Chemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016599362500202X\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Analytical Chemistry","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016599362500202X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
CRISPR/Cas-based SERS detection: A win-win integration towards real-world applications
In recent years, the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated nuclease (Cas) system has risen as a powerful tool for genome editing. Beyond its editing capabilities, CRISPR/Cas system has garnered significant interest in molecular diagnostics, especially for nucleic acid detection due to its high sensitivity and specificity. Surface-enhanced Raman spectroscopy (SERS), reliant on plasmonic nanoparticles or nanostructures, was extensively employed in biosensing owing to its exceptional sensitivity and distinctive spectral bands. The integration of SERS with CRISPR/Cas technology led to the development of numerous biosensing approaches aimed at achieving ultra-sensitive detection. This review provided an overview of both the CRISPR/Cas and SERS technology, followed by a comprehensive summary of their combined application for nucleic acid detection. Furthermore, it delved into the current landscape of CRISPR/Cas-based SERS detection, addressing existing challenges and prospects for future advancements.
期刊介绍:
TrAC publishes succinct and critical overviews of recent advancements in analytical chemistry, designed to assist analytical chemists and other users of analytical techniques. These reviews offer excellent, up-to-date, and timely coverage of various topics within analytical chemistry. Encompassing areas such as analytical instrumentation, biomedical analysis, biomolecular analysis, biosensors, chemical analysis, chemometrics, clinical chemistry, drug discovery, environmental analysis and monitoring, food analysis, forensic science, laboratory automation, materials science, metabolomics, pesticide-residue analysis, pharmaceutical analysis, proteomics, surface science, and water analysis and monitoring, these critical reviews provide comprehensive insights for practitioners in the field.