量子开放系统的路径积分形式

IF 3 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Ruofan Chen
{"title":"量子开放系统的路径积分形式","authors":"Ruofan Chen","doi":"10.1016/j.aop.2025.170083","DOIUrl":null,"url":null,"abstract":"<div><div>This article provides a detailed derivation of the path integral formalism for both boson and fermion quantum open systems using coherent states. The formalism on the imaginary-time axis, Keldysh contour, and Kadanoff contour are given. The corresponding generating functional technique, which can be used to retrieve the environment information from the system correlation function, is also discussed.</div></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":"480 ","pages":"Article 170083"},"PeriodicalIF":3.0000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Path integral formalism for quantum open systems\",\"authors\":\"Ruofan Chen\",\"doi\":\"10.1016/j.aop.2025.170083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This article provides a detailed derivation of the path integral formalism for both boson and fermion quantum open systems using coherent states. The formalism on the imaginary-time axis, Keldysh contour, and Kadanoff contour are given. The corresponding generating functional technique, which can be used to retrieve the environment information from the system correlation function, is also discussed.</div></div>\",\"PeriodicalId\":8249,\"journal\":{\"name\":\"Annals of Physics\",\"volume\":\"480 \",\"pages\":\"Article 170083\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003491625001654\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003491625001654","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文详细推导了玻色子和费米子量子开放系统的相干态路径积分形式。给出了虚时间轴、Keldysh等值线和Kadanoff等值线的形式。讨论了相应的生成函数技术,该技术可以从系统相关函数中检索环境信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Path integral formalism for quantum open systems
This article provides a detailed derivation of the path integral formalism for both boson and fermion quantum open systems using coherent states. The formalism on the imaginary-time axis, Keldysh contour, and Kadanoff contour are given. The corresponding generating functional technique, which can be used to retrieve the environment information from the system correlation function, is also discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Physics
Annals of Physics 物理-物理:综合
CiteScore
5.30
自引率
3.30%
发文量
211
审稿时长
47 days
期刊介绍: Annals of Physics presents original work in all areas of basic theoretic physics research. Ideas are developed and fully explored, and thorough treatment is given to first principles and ultimate applications. Annals of Physics emphasizes clarity and intelligibility in the articles it publishes, thus making them as accessible as possible. Readers familiar with recent developments in the field are provided with sufficient detail and background to follow the arguments and understand their significance. The Editors of the journal cover all fields of theoretical physics. Articles published in the journal are typically longer than 20 pages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信