{"title":"无环长度为4和6的平面图的一个(F2,F6)划分","authors":"Ziwen Huang , Xiangwen Li , Lin Niu","doi":"10.1016/j.disc.2025.114626","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>G</em> be a graph with the vertex set <span><math><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, an <span><math><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msub><mo>)</mo></math></span>-partition of <em>G</em> is a partition of its vertex set <span><math><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> into <em>k</em> sets <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> such that the graph <span><math><mi>G</mi><mo>[</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>]</mo></math></span> induced by <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is a forest with maximum degree at most <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> for each <span><math><mi>i</mi><mo>∈</mo><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi><mo>}</mo></math></span>. Huang et al. (2023) <span><span>[16]</span></span> and Sittitrai and Nakprasit, <span><span>arXiv:2203.06466</span><svg><path></path></svg></span> <span><span>[24]</span></span>, independently, showed that every planar graph without cycles of length 4 and 6 has an <span><math><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mi>F</mi><mo>)</mo></math></span>-partition. Huang et al. (2023) <span><span>[16]</span></span> posed a question whether there is a positive integer <em>d</em> such that every planar graph without cycles of length 4 and 6 has an <span><math><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo></math></span>-partition. In this paper, we answer affirmatively this question and prove that every planar graph without cycles of length 4 and 6 has an <span><math><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>6</mn></mrow></msub><mo>)</mo></math></span>-partition, which strengthens the earlier results of Huang, Huang and Lv, and Sittitrai and Nakprasit.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 12","pages":"Article 114626"},"PeriodicalIF":0.7000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An (F2,F6)-partition of planar graphs without cycles of length 4 and 6\",\"authors\":\"Ziwen Huang , Xiangwen Li , Lin Niu\",\"doi\":\"10.1016/j.disc.2025.114626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>G</em> be a graph with the vertex set <span><math><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, an <span><math><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msub><mo>)</mo></math></span>-partition of <em>G</em> is a partition of its vertex set <span><math><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> into <em>k</em> sets <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> such that the graph <span><math><mi>G</mi><mo>[</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>]</mo></math></span> induced by <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is a forest with maximum degree at most <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> for each <span><math><mi>i</mi><mo>∈</mo><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi><mo>}</mo></math></span>. Huang et al. (2023) <span><span>[16]</span></span> and Sittitrai and Nakprasit, <span><span>arXiv:2203.06466</span><svg><path></path></svg></span> <span><span>[24]</span></span>, independently, showed that every planar graph without cycles of length 4 and 6 has an <span><math><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mi>F</mi><mo>)</mo></math></span>-partition. Huang et al. (2023) <span><span>[16]</span></span> posed a question whether there is a positive integer <em>d</em> such that every planar graph without cycles of length 4 and 6 has an <span><math><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo></math></span>-partition. In this paper, we answer affirmatively this question and prove that every planar graph without cycles of length 4 and 6 has an <span><math><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>6</mn></mrow></msub><mo>)</mo></math></span>-partition, which strengthens the earlier results of Huang, Huang and Lv, and Sittitrai and Nakprasit.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 12\",\"pages\":\"Article 114626\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25002341\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25002341","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设G为顶点集V(G)的图,且(Fd1,…,Fdk)- G的划分是将其顶点集V(G)划分为k个集合V1,…,Vk,使得由Vi诱导的图G[Vi]对于每个i∈{1,…,k}是一个最大度不超过di的森林。Huang et al.(2023)[16]和Sittitrai and Nakprasit, arXiv:2203.06466[24]分别证明了每个不存在长度为4和6的环的平面图都有一个(F2,F)分割。Huang et al.(2023)[16]提出了一个问题,是否存在一个正整数d,使得每个没有长度为4和6的循环的平面图都有一个(F2,Fd)分区。在本文中,我们肯定地回答了这个问题,并证明了每一个没有长度为4和6的环的平面图都有一个(F2,F6)-分割,从而加强了Huang, Huang和Lv,以及Sittitrai和Nakprasit先前的结果。
An (F2,F6)-partition of planar graphs without cycles of length 4 and 6
Let G be a graph with the vertex set , an -partition of G is a partition of its vertex set into k sets such that the graph induced by is a forest with maximum degree at most for each . Huang et al. (2023) [16] and Sittitrai and Nakprasit, arXiv:2203.06466[24], independently, showed that every planar graph without cycles of length 4 and 6 has an -partition. Huang et al. (2023) [16] posed a question whether there is a positive integer d such that every planar graph without cycles of length 4 and 6 has an -partition. In this paper, we answer affirmatively this question and prove that every planar graph without cycles of length 4 and 6 has an -partition, which strengthens the earlier results of Huang, Huang and Lv, and Sittitrai and Nakprasit.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.