无环长度为4和6的平面图的一个(F2,F6)划分

IF 0.7 3区 数学 Q2 MATHEMATICS
Ziwen Huang , Xiangwen Li , Lin Niu
{"title":"无环长度为4和6的平面图的一个(F2,F6)划分","authors":"Ziwen Huang ,&nbsp;Xiangwen Li ,&nbsp;Lin Niu","doi":"10.1016/j.disc.2025.114626","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>G</em> be a graph with the vertex set <span><math><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, an <span><math><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msub><mo>)</mo></math></span>-partition of <em>G</em> is a partition of its vertex set <span><math><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> into <em>k</em> sets <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> such that the graph <span><math><mi>G</mi><mo>[</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>]</mo></math></span> induced by <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is a forest with maximum degree at most <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> for each <span><math><mi>i</mi><mo>∈</mo><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi><mo>}</mo></math></span>. Huang et al. (2023) <span><span>[16]</span></span> and Sittitrai and Nakprasit, <span><span>arXiv:2203.06466</span><svg><path></path></svg></span> <span><span>[24]</span></span>, independently, showed that every planar graph without cycles of length 4 and 6 has an <span><math><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mi>F</mi><mo>)</mo></math></span>-partition. Huang et al. (2023) <span><span>[16]</span></span> posed a question whether there is a positive integer <em>d</em> such that every planar graph without cycles of length 4 and 6 has an <span><math><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo></math></span>-partition. In this paper, we answer affirmatively this question and prove that every planar graph without cycles of length 4 and 6 has an <span><math><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>6</mn></mrow></msub><mo>)</mo></math></span>-partition, which strengthens the earlier results of Huang, Huang and Lv, and Sittitrai and Nakprasit.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 12","pages":"Article 114626"},"PeriodicalIF":0.7000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An (F2,F6)-partition of planar graphs without cycles of length 4 and 6\",\"authors\":\"Ziwen Huang ,&nbsp;Xiangwen Li ,&nbsp;Lin Niu\",\"doi\":\"10.1016/j.disc.2025.114626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>G</em> be a graph with the vertex set <span><math><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, an <span><math><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msub><mo>)</mo></math></span>-partition of <em>G</em> is a partition of its vertex set <span><math><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> into <em>k</em> sets <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> such that the graph <span><math><mi>G</mi><mo>[</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>]</mo></math></span> induced by <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is a forest with maximum degree at most <span><math><msub><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> for each <span><math><mi>i</mi><mo>∈</mo><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi><mo>}</mo></math></span>. Huang et al. (2023) <span><span>[16]</span></span> and Sittitrai and Nakprasit, <span><span>arXiv:2203.06466</span><svg><path></path></svg></span> <span><span>[24]</span></span>, independently, showed that every planar graph without cycles of length 4 and 6 has an <span><math><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mi>F</mi><mo>)</mo></math></span>-partition. Huang et al. (2023) <span><span>[16]</span></span> posed a question whether there is a positive integer <em>d</em> such that every planar graph without cycles of length 4 and 6 has an <span><math><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo></math></span>-partition. In this paper, we answer affirmatively this question and prove that every planar graph without cycles of length 4 and 6 has an <span><math><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>6</mn></mrow></msub><mo>)</mo></math></span>-partition, which strengthens the earlier results of Huang, Huang and Lv, and Sittitrai and Nakprasit.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 12\",\"pages\":\"Article 114626\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25002341\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25002341","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设G为顶点集V(G)的图,且(Fd1,…,Fdk)- G的划分是将其顶点集V(G)划分为k个集合V1,…,Vk,使得由Vi诱导的图G[Vi]对于每个i∈{1,…,k}是一个最大度不超过di的森林。Huang et al.(2023)[16]和Sittitrai and Nakprasit, arXiv:2203.06466[24]分别证明了每个不存在长度为4和6的环的平面图都有一个(F2,F)分割。Huang et al.(2023)[16]提出了一个问题,是否存在一个正整数d,使得每个没有长度为4和6的循环的平面图都有一个(F2,Fd)分区。在本文中,我们肯定地回答了这个问题,并证明了每一个没有长度为4和6的环的平面图都有一个(F2,F6)-分割,从而加强了Huang, Huang和Lv,以及Sittitrai和Nakprasit先前的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An (F2,F6)-partition of planar graphs without cycles of length 4 and 6
Let G be a graph with the vertex set V(G), an (Fd1,,Fdk)-partition of G is a partition of its vertex set V(G) into k sets V1,,Vk such that the graph G[Vi] induced by Vi is a forest with maximum degree at most di for each i{1,,k}. Huang et al. (2023) [16] and Sittitrai and Nakprasit, arXiv:2203.06466 [24], independently, showed that every planar graph without cycles of length 4 and 6 has an (F2,F)-partition. Huang et al. (2023) [16] posed a question whether there is a positive integer d such that every planar graph without cycles of length 4 and 6 has an (F2,Fd)-partition. In this paper, we answer affirmatively this question and prove that every planar graph without cycles of length 4 and 6 has an (F2,F6)-partition, which strengthens the earlier results of Huang, Huang and Lv, and Sittitrai and Nakprasit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信