Jigneshkumar B. Barot , Himalay Kolavada , Sanjeev K. Gupta , P. N. Gajjar
{"title":"二维卤化铪和杂卤化铪:桥接拓扑性质和量子电容","authors":"Jigneshkumar B. Barot , Himalay Kolavada , Sanjeev K. Gupta , P. N. Gajjar","doi":"10.1016/j.jpcs.2025.112928","DOIUrl":null,"url":null,"abstract":"<div><div>Two-dimensional (2D) topological insulators (TIs) have become an intriguing family of materials due to their potential applications in spintronics, quantum computing, and nanoelectronics, as well as their resilient edge states shielded by time-reversal symmetry. The structural, electronic, optical and topological characteristics of hafnium halides and their hetero halides (<span><math><mrow><msub><mtext>Hf</mtext><mn>2</mn></msub><msub><mi>X</mi><mn>2</mn></msub></mrow></math></span>, where X = one or two halogen from Cl, Br and I) are examined in this work. We verify their non-trivial topological character by analyzing their stability, band structures, and topological invariants using first-principles density functional theory (DFT) computations. Our findings show that halide composition and spin-orbit coupling (SOC) have a major impact on band inversion. The topological insulator nature is confirmed by the presence of gapless edge states and the computed z2 invariant. Optical properties of these materials, such as their absorption spectra and dielectric function, demonstrate their potential for use in optoelectronics. Additionally, calculations of quantum capacitance show that it has a large capacity for storing charge. This thorough investigation of hafnium halides and hafnium hetero halides identifies them as viable options for 2D TIs with a variety of applications in optoelectronics and energy storage.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"207 ","pages":"Article 112928"},"PeriodicalIF":4.3000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"2D hafnium halides and hetero halides: Bridging topological properties and quantum capacitance\",\"authors\":\"Jigneshkumar B. Barot , Himalay Kolavada , Sanjeev K. Gupta , P. N. Gajjar\",\"doi\":\"10.1016/j.jpcs.2025.112928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Two-dimensional (2D) topological insulators (TIs) have become an intriguing family of materials due to their potential applications in spintronics, quantum computing, and nanoelectronics, as well as their resilient edge states shielded by time-reversal symmetry. The structural, electronic, optical and topological characteristics of hafnium halides and their hetero halides (<span><math><mrow><msub><mtext>Hf</mtext><mn>2</mn></msub><msub><mi>X</mi><mn>2</mn></msub></mrow></math></span>, where X = one or two halogen from Cl, Br and I) are examined in this work. We verify their non-trivial topological character by analyzing their stability, band structures, and topological invariants using first-principles density functional theory (DFT) computations. Our findings show that halide composition and spin-orbit coupling (SOC) have a major impact on band inversion. The topological insulator nature is confirmed by the presence of gapless edge states and the computed z2 invariant. Optical properties of these materials, such as their absorption spectra and dielectric function, demonstrate their potential for use in optoelectronics. Additionally, calculations of quantum capacitance show that it has a large capacity for storing charge. This thorough investigation of hafnium halides and hafnium hetero halides identifies them as viable options for 2D TIs with a variety of applications in optoelectronics and energy storage.</div></div>\",\"PeriodicalId\":16811,\"journal\":{\"name\":\"Journal of Physics and Chemistry of Solids\",\"volume\":\"207 \",\"pages\":\"Article 112928\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics and Chemistry of Solids\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022369725003804\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369725003804","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
2D hafnium halides and hetero halides: Bridging topological properties and quantum capacitance
Two-dimensional (2D) topological insulators (TIs) have become an intriguing family of materials due to their potential applications in spintronics, quantum computing, and nanoelectronics, as well as their resilient edge states shielded by time-reversal symmetry. The structural, electronic, optical and topological characteristics of hafnium halides and their hetero halides (, where X = one or two halogen from Cl, Br and I) are examined in this work. We verify their non-trivial topological character by analyzing their stability, band structures, and topological invariants using first-principles density functional theory (DFT) computations. Our findings show that halide composition and spin-orbit coupling (SOC) have a major impact on band inversion. The topological insulator nature is confirmed by the presence of gapless edge states and the computed z2 invariant. Optical properties of these materials, such as their absorption spectra and dielectric function, demonstrate their potential for use in optoelectronics. Additionally, calculations of quantum capacitance show that it has a large capacity for storing charge. This thorough investigation of hafnium halides and hafnium hetero halides identifies them as viable options for 2D TIs with a variety of applications in optoelectronics and energy storage.
期刊介绍:
The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems.
Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal:
Low-dimensional systems
Exotic states of quantum electron matter including topological phases
Energy conversion and storage
Interfaces, nanoparticles and catalysts.