{"title":"具有多项式时间准周期扰动的1−d量子谐振子Sobolev范数的几乎可约性和增长","authors":"Yue Mi","doi":"10.1016/j.jmaa.2025.129751","DOIUrl":null,"url":null,"abstract":"<div><div>For 1–d quantum harmonic oscillator perturbed by a time quasi-periodic non-homogeneous quadratic polynomials in <span><math><mo>(</mo><mi>x</mi><mo>,</mo><mo>−</mo><mi>i</mi><msub><mrow><mo>∂</mo></mrow><mrow><mi>x</mi></mrow></msub><mo>)</mo></math></span>, we prove its almost reducibility. Based on this theory, we have shown the growth of Sobolev norms of solutions. In fact it will have an <span><math><mi>o</mi><mo>(</mo><msup><mrow><mi>t</mi></mrow><mrow><mi>s</mi></mrow></msup><mo>)</mo></math></span>-upper bound for the <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup></math></span>-norm when the equation is non-reducible. The results are proved via the utilization of Schrödinger and Metaplectic representation.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"552 2","pages":"Article 129751"},"PeriodicalIF":1.2000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Almost reducibility and growth of Sobolev norms of 1−d quantum harmonic oscillator with polynomial time quasi-periodic perturbations\",\"authors\":\"Yue Mi\",\"doi\":\"10.1016/j.jmaa.2025.129751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For 1–d quantum harmonic oscillator perturbed by a time quasi-periodic non-homogeneous quadratic polynomials in <span><math><mo>(</mo><mi>x</mi><mo>,</mo><mo>−</mo><mi>i</mi><msub><mrow><mo>∂</mo></mrow><mrow><mi>x</mi></mrow></msub><mo>)</mo></math></span>, we prove its almost reducibility. Based on this theory, we have shown the growth of Sobolev norms of solutions. In fact it will have an <span><math><mi>o</mi><mo>(</mo><msup><mrow><mi>t</mi></mrow><mrow><mi>s</mi></mrow></msup><mo>)</mo></math></span>-upper bound for the <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup></math></span>-norm when the equation is non-reducible. The results are proved via the utilization of Schrödinger and Metaplectic representation.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"552 2\",\"pages\":\"Article 129751\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25005323\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25005323","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Almost reducibility and growth of Sobolev norms of 1−d quantum harmonic oscillator with polynomial time quasi-periodic perturbations
For 1–d quantum harmonic oscillator perturbed by a time quasi-periodic non-homogeneous quadratic polynomials in , we prove its almost reducibility. Based on this theory, we have shown the growth of Sobolev norms of solutions. In fact it will have an -upper bound for the -norm when the equation is non-reducible. The results are proved via the utilization of Schrödinger and Metaplectic representation.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.