重新审视磷酸锂铝钛化学:揭示全固态电池的进展

Varsha Lisa John , Joel Baskar B , Nina V. Kosova , Sahana M. B , Raman Vedarajan
{"title":"重新审视磷酸锂铝钛化学:揭示全固态电池的进展","authors":"Varsha Lisa John ,&nbsp;Joel Baskar B ,&nbsp;Nina V. Kosova ,&nbsp;Sahana M. B ,&nbsp;Raman Vedarajan","doi":"10.1016/j.nxmate.2025.100768","DOIUrl":null,"url":null,"abstract":"<div><div>Solid-state batteries (SSBs) will become indispensable for electronics and technological advancements. Currently, lithium-ion batteries (LIBs) utilize liquid electrolytes, leading to shorting and damaging the device. Solid-state electrolytes (SSEs) are advantageous due to their excellent chemical stability when in contact with the electrode materials, exceptional thermal and electrochemical stability window in the operation of SSBs, and they can diminish the use of a separator. The quest for safer electrolytes paved the way for developing phosphate-based electrolytes. Lithium Aluminium Titanium Phosphate (LATP) is favorable for scaling up to cell-level configurations on an industrial scale due to the low cost of raw materials, reasonable air and chemical stability, and outstanding electrochemical performance. This review traverses to the structure and conduction mechanisms of LATP after introducing and comparing various synthesis methods. The review also sheds light on the LATP-polymer composite electrolytes for improved ionic conductivity and manufacturability.</div></div>","PeriodicalId":100958,"journal":{"name":"Next Materials","volume":"8 ","pages":"Article 100768"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revisiting lithium aluminium titanium phosphate chemistry: Unveiling advancements for all-solid-state batteries\",\"authors\":\"Varsha Lisa John ,&nbsp;Joel Baskar B ,&nbsp;Nina V. Kosova ,&nbsp;Sahana M. B ,&nbsp;Raman Vedarajan\",\"doi\":\"10.1016/j.nxmate.2025.100768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Solid-state batteries (SSBs) will become indispensable for electronics and technological advancements. Currently, lithium-ion batteries (LIBs) utilize liquid electrolytes, leading to shorting and damaging the device. Solid-state electrolytes (SSEs) are advantageous due to their excellent chemical stability when in contact with the electrode materials, exceptional thermal and electrochemical stability window in the operation of SSBs, and they can diminish the use of a separator. The quest for safer electrolytes paved the way for developing phosphate-based electrolytes. Lithium Aluminium Titanium Phosphate (LATP) is favorable for scaling up to cell-level configurations on an industrial scale due to the low cost of raw materials, reasonable air and chemical stability, and outstanding electrochemical performance. This review traverses to the structure and conduction mechanisms of LATP after introducing and comparing various synthesis methods. The review also sheds light on the LATP-polymer composite electrolytes for improved ionic conductivity and manufacturability.</div></div>\",\"PeriodicalId\":100958,\"journal\":{\"name\":\"Next Materials\",\"volume\":\"8 \",\"pages\":\"Article 100768\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Next Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949822825002862\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949822825002862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

固态电池(SSBs)将成为电子和技术进步不可或缺的一部分。目前,锂离子电池(LIBs)使用液体电解质,导致短路和损坏设备。固态电解质(SSEs)的优势在于其与电极材料接触时具有优异的化学稳定性,在SSBs的操作中具有特殊的热和电化学稳定性窗口,并且可以减少分离器的使用。对更安全电解质的追求为开发磷酸盐基电解质铺平了道路。磷酸铝钛锂(LATP)由于原材料成本低、空气和化学稳定性好、电化学性能优异,有利于扩大到工业规模的电池级配置。本文通过对各种合成方法的介绍和比较,对LATP的结构和传导机理进行了综述。综述还揭示了latp -聚合物复合电解质改善离子电导率和可制造性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Revisiting lithium aluminium titanium phosphate chemistry: Unveiling advancements for all-solid-state batteries
Solid-state batteries (SSBs) will become indispensable for electronics and technological advancements. Currently, lithium-ion batteries (LIBs) utilize liquid electrolytes, leading to shorting and damaging the device. Solid-state electrolytes (SSEs) are advantageous due to their excellent chemical stability when in contact with the electrode materials, exceptional thermal and electrochemical stability window in the operation of SSBs, and they can diminish the use of a separator. The quest for safer electrolytes paved the way for developing phosphate-based electrolytes. Lithium Aluminium Titanium Phosphate (LATP) is favorable for scaling up to cell-level configurations on an industrial scale due to the low cost of raw materials, reasonable air and chemical stability, and outstanding electrochemical performance. This review traverses to the structure and conduction mechanisms of LATP after introducing and comparing various synthesis methods. The review also sheds light on the LATP-polymer composite electrolytes for improved ionic conductivity and manufacturability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信