扩展π桥和分子电荷对聚集诱导发射光敏剂对多重耐药细菌光动力学活性的影响

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ze Zhang, Jiang Yin, Qian Wang, Xu Zhou, Lingyi Shen, Hong Xu*, Xianjiong Yang*, Carl Redshaw and Qi-Long Zhang*, 
{"title":"扩展π桥和分子电荷对聚集诱导发射光敏剂对多重耐药细菌光动力学活性的影响","authors":"Ze Zhang,&nbsp;Jiang Yin,&nbsp;Qian Wang,&nbsp;Xu Zhou,&nbsp;Lingyi Shen,&nbsp;Hong Xu*,&nbsp;Xianjiong Yang*,&nbsp;Carl Redshaw and Qi-Long Zhang*,&nbsp;","doi":"10.1021/acsami.5c0164610.1021/acsami.5c01646","DOIUrl":null,"url":null,"abstract":"<p >Multidrug resistant (MDR) bacterial infections are a major challenge encountered in global healthcare today. We have designed and synthesized three aggregation-induced emission (AIE) photosensitizers with different positive charges, named ((<i>E</i>)-N,N-diphenyl-4-(7-(2-(pyridin-4-yl)vinyl)benzo[<i>c</i>][1,2,5]thiadiazol-4-yl)aniline, <b>TPA–S-N</b>), ((<i>E</i>)-4-(2-(7-(4-(diphenylamino)phenyl)benzo[<i>c</i>][1,2,5]thiadiazol-4-yl)vinyl)-1-ethylpyridin-1-ium bromide, <b>TPA–S-N</b><sup><b>+</b></sup>), and ((<i>E</i>)-4-(2-(7-(4-(diphenylamino)phenyl)benzo[<i>c</i>][1,2,5]thiadiazol-4-yl)vinyl)-1-(3-(trimethylammonio)propyl)pyridin-1-ium bromide, <b>TPA–S-N</b><sup><b>++</b></sup>), through the extended π-bridge strategy and the introduction of a C═C double bond. We have investigated the effects of the extended π-bridges and differences in molecular charge on the activity of the photosensitizers against multidrug-resistant bacteria. The results showed that they efficiently produced reactive oxygen species under white light irradiation due to the extended π-bridges. After white light irradiation (40 mW cm<sup>–2</sup>), <b>TPA–S-N</b><sup><b>+</b></sup> was 1.75 times more effective than <b>TPA–S-N</b><sup><b>++</b></sup> in killing methicillin-resistant <i>Staphylococcus aureus</i> (MRSA) at a concentration of only 0.10 μM (0.06 μg/mL). With the increase of positive charge, the enhancement of electrostatic interaction and the decrease of hydrophobicity, <b>TPA–S-N</b><sup><b>++</b></sup> inactivated 80.30% of MDR <i>E. coli</i> at a concentration of 5.00 μM (3.72 μg/mL), and the antimicrobial effect was 3.12 times higher than that of <b>TPA–S-N</b><sup><b>+</b></sup>. The photosensitizers all provide clear fluorescent imaging of bacterial cell membranes and act primarily on bacterial membranes to kill bacteria. <i>In vivo</i> experiments showed that <b>TPA–S-N</b><sup><b>+</b></sup> and <b>TPA–S-N</b><sup><b>++</b></sup> successfully promoted wound healing in MRSA-infected mice. In addition, we coincubated the two bacteria and added photosensitizers for costaining and found that photosensitizers fluoresced red on the membranes of MRSA while MDR <i>E. coli</i> did not, which provided a means of visualizing the tracing of MRSA.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"17 23","pages":"33381–33394 33381–33394"},"PeriodicalIF":8.2000,"publicationDate":"2025-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Extended π-Bridges and Molecular Charge on the Photodynamic Activity of Aggregation-Induced Emission Photosensitizers against Multidrug-Resistant Bacteria\",\"authors\":\"Ze Zhang,&nbsp;Jiang Yin,&nbsp;Qian Wang,&nbsp;Xu Zhou,&nbsp;Lingyi Shen,&nbsp;Hong Xu*,&nbsp;Xianjiong Yang*,&nbsp;Carl Redshaw and Qi-Long Zhang*,&nbsp;\",\"doi\":\"10.1021/acsami.5c0164610.1021/acsami.5c01646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Multidrug resistant (MDR) bacterial infections are a major challenge encountered in global healthcare today. We have designed and synthesized three aggregation-induced emission (AIE) photosensitizers with different positive charges, named ((<i>E</i>)-N,N-diphenyl-4-(7-(2-(pyridin-4-yl)vinyl)benzo[<i>c</i>][1,2,5]thiadiazol-4-yl)aniline, <b>TPA–S-N</b>), ((<i>E</i>)-4-(2-(7-(4-(diphenylamino)phenyl)benzo[<i>c</i>][1,2,5]thiadiazol-4-yl)vinyl)-1-ethylpyridin-1-ium bromide, <b>TPA–S-N</b><sup><b>+</b></sup>), and ((<i>E</i>)-4-(2-(7-(4-(diphenylamino)phenyl)benzo[<i>c</i>][1,2,5]thiadiazol-4-yl)vinyl)-1-(3-(trimethylammonio)propyl)pyridin-1-ium bromide, <b>TPA–S-N</b><sup><b>++</b></sup>), through the extended π-bridge strategy and the introduction of a C═C double bond. We have investigated the effects of the extended π-bridges and differences in molecular charge on the activity of the photosensitizers against multidrug-resistant bacteria. The results showed that they efficiently produced reactive oxygen species under white light irradiation due to the extended π-bridges. After white light irradiation (40 mW cm<sup>–2</sup>), <b>TPA–S-N</b><sup><b>+</b></sup> was 1.75 times more effective than <b>TPA–S-N</b><sup><b>++</b></sup> in killing methicillin-resistant <i>Staphylococcus aureus</i> (MRSA) at a concentration of only 0.10 μM (0.06 μg/mL). With the increase of positive charge, the enhancement of electrostatic interaction and the decrease of hydrophobicity, <b>TPA–S-N</b><sup><b>++</b></sup> inactivated 80.30% of MDR <i>E. coli</i> at a concentration of 5.00 μM (3.72 μg/mL), and the antimicrobial effect was 3.12 times higher than that of <b>TPA–S-N</b><sup><b>+</b></sup>. The photosensitizers all provide clear fluorescent imaging of bacterial cell membranes and act primarily on bacterial membranes to kill bacteria. <i>In vivo</i> experiments showed that <b>TPA–S-N</b><sup><b>+</b></sup> and <b>TPA–S-N</b><sup><b>++</b></sup> successfully promoted wound healing in MRSA-infected mice. In addition, we coincubated the two bacteria and added photosensitizers for costaining and found that photosensitizers fluoresced red on the membranes of MRSA while MDR <i>E. coli</i> did not, which provided a means of visualizing the tracing of MRSA.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"17 23\",\"pages\":\"33381–33394 33381–33394\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.5c01646\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.5c01646","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

耐多药(MDR)细菌感染是当今全球医疗保健面临的主要挑战。我们设计并合成了三种不同正电荷的聚集诱导发射(AIE)光敏剂,分别命名为((E)- n, n-二苯基-4-(7-(2-(吡啶-4-基)乙烯基)苯并[c][1,2,5]噻二唑-4-基)苯胺,TPA-S-N +), ((E)-4-(2-(7-(4-(二苯基)苯基)苯并[c][1,2,5]噻二唑-4-基)乙烯基)-1-乙基吡啶-1-溴化铵,TPA-S-N +)和((E)-4-(2-(7-(4-(二苯基)苯基)苯并[c][1,2,5]噻二唑-4-基)乙烯基)-1-(3-(三甲基胺)丙基)吡啶-1-溴化铵,TPA-S-N +)。通过扩展π桥策略和引入C = C双键。我们研究了扩展π桥和分子电荷差异对光敏剂抗多药耐药菌活性的影响。结果表明,在白光照射下,由于π桥的扩展,它们能有效地产生活性氧。白光照射(40 mW cm-2)后,浓度为0.10 μM (0.06 μg/mL)的TPA-S-N +对耐甲氧西林金黄色葡萄球菌(MRSA)的杀伤效果是TPA-S-N +的1.75倍。随着正电荷的增加、静电相互作用的增强和疏水性的降低,TPA-S-N +在5.00 μM (3.72 μg/mL)浓度下对80.30%的MDR大肠杆菌失活,抑菌效果是TPA-S-N +的3.12倍。光敏剂都能提供细菌细胞膜的清晰荧光成像,并主要作用于细菌膜以杀死细菌。体内实验表明,TPA-S-N +和TPA-S-N ++成功地促进了mrsa感染小鼠的伤口愈合。此外,我们将两种细菌共孵育并添加光敏剂进行染色,发现光敏剂在MRSA膜上发出红色荧光,而MDR大肠杆菌则没有,这为MRSA的可视化追踪提供了一种手段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effect of Extended π-Bridges and Molecular Charge on the Photodynamic Activity of Aggregation-Induced Emission Photosensitizers against Multidrug-Resistant Bacteria

Effect of Extended π-Bridges and Molecular Charge on the Photodynamic Activity of Aggregation-Induced Emission Photosensitizers against Multidrug-Resistant Bacteria

Multidrug resistant (MDR) bacterial infections are a major challenge encountered in global healthcare today. We have designed and synthesized three aggregation-induced emission (AIE) photosensitizers with different positive charges, named ((E)-N,N-diphenyl-4-(7-(2-(pyridin-4-yl)vinyl)benzo[c][1,2,5]thiadiazol-4-yl)aniline, TPA–S-N), ((E)-4-(2-(7-(4-(diphenylamino)phenyl)benzo[c][1,2,5]thiadiazol-4-yl)vinyl)-1-ethylpyridin-1-ium bromide, TPA–S-N+), and ((E)-4-(2-(7-(4-(diphenylamino)phenyl)benzo[c][1,2,5]thiadiazol-4-yl)vinyl)-1-(3-(trimethylammonio)propyl)pyridin-1-ium bromide, TPA–S-N++), through the extended π-bridge strategy and the introduction of a C═C double bond. We have investigated the effects of the extended π-bridges and differences in molecular charge on the activity of the photosensitizers against multidrug-resistant bacteria. The results showed that they efficiently produced reactive oxygen species under white light irradiation due to the extended π-bridges. After white light irradiation (40 mW cm–2), TPA–S-N+ was 1.75 times more effective than TPA–S-N++ in killing methicillin-resistant Staphylococcus aureus (MRSA) at a concentration of only 0.10 μM (0.06 μg/mL). With the increase of positive charge, the enhancement of electrostatic interaction and the decrease of hydrophobicity, TPA–S-N++ inactivated 80.30% of MDR E. coli at a concentration of 5.00 μM (3.72 μg/mL), and the antimicrobial effect was 3.12 times higher than that of TPA–S-N+. The photosensitizers all provide clear fluorescent imaging of bacterial cell membranes and act primarily on bacterial membranes to kill bacteria. In vivo experiments showed that TPA–S-N+ and TPA–S-N++ successfully promoted wound healing in MRSA-infected mice. In addition, we coincubated the two bacteria and added photosensitizers for costaining and found that photosensitizers fluoresced red on the membranes of MRSA while MDR E. coli did not, which provided a means of visualizing the tracing of MRSA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信