用Gomb-Net法鉴定双层moir材料中的原子

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Austin C. Houston, Sumner B. Harris*, Hao Wang, Yu-Chuan Lin, David B. Geohegan, Kai Xiao and Gerd Duscher*, 
{"title":"用Gomb-Net法鉴定双层moir材料中的原子","authors":"Austin C. Houston,&nbsp;Sumner B. Harris*,&nbsp;Hao Wang,&nbsp;Yu-Chuan Lin,&nbsp;David B. Geohegan,&nbsp;Kai Xiao and Gerd Duscher*,&nbsp;","doi":"10.1021/acs.nanolett.5c0146010.1021/acs.nanolett.5c01460","DOIUrl":null,"url":null,"abstract":"<p >Moiré patterns in van der Waals bilayer materials complicate the analysis of atomic-resolution images, hindering the atomic-scale insight typically attainable with scanning transmission electron microscopy. Here, we report a method to detect the positions and identities of atoms in each of the individual layers that compose twisted bilayer heterostructures. We developed a deep learning model, Gomb-Net, which identifies the coordinates and atomic species in each layer, deconvoluting the moiré pattern. This enables layer-specific mapping of atomic positions and dopant distributions, unlike other commonly used segmentation models which struggle with moiré-induced complexity. Using this approach, we explored the Se atom substitutional site distribution in a twisted fractional Janus WS<sub>2</sub>-WS<sub>2(1–<i>x</i>)</sub>Se<sub>2<i>x</i></sub> heterostructure and found that layer-specific implantation sites are unaffected by the moiré pattern’s local energetic or electronic modulation. This advancement enables atom identification within material regimes where it was not possible before, opening new insights into previously inaccessible material physics.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 23","pages":"9277–9284 9277–9284"},"PeriodicalIF":9.1000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atom Identification in Bilayer Moiré Materials with Gomb-Net\",\"authors\":\"Austin C. Houston,&nbsp;Sumner B. Harris*,&nbsp;Hao Wang,&nbsp;Yu-Chuan Lin,&nbsp;David B. Geohegan,&nbsp;Kai Xiao and Gerd Duscher*,&nbsp;\",\"doi\":\"10.1021/acs.nanolett.5c0146010.1021/acs.nanolett.5c01460\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Moiré patterns in van der Waals bilayer materials complicate the analysis of atomic-resolution images, hindering the atomic-scale insight typically attainable with scanning transmission electron microscopy. Here, we report a method to detect the positions and identities of atoms in each of the individual layers that compose twisted bilayer heterostructures. We developed a deep learning model, Gomb-Net, which identifies the coordinates and atomic species in each layer, deconvoluting the moiré pattern. This enables layer-specific mapping of atomic positions and dopant distributions, unlike other commonly used segmentation models which struggle with moiré-induced complexity. Using this approach, we explored the Se atom substitutional site distribution in a twisted fractional Janus WS<sub>2</sub>-WS<sub>2(1–<i>x</i>)</sub>Se<sub>2<i>x</i></sub> heterostructure and found that layer-specific implantation sites are unaffected by the moiré pattern’s local energetic or electronic modulation. This advancement enables atom identification within material regimes where it was not possible before, opening new insights into previously inaccessible material physics.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"25 23\",\"pages\":\"9277–9284 9277–9284\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c01460\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c01460","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

范德华双层材料中的莫尔条纹图案使原子分辨率图像的分析复杂化,阻碍了通常用扫描透射电子显微镜可以获得的原子尺度的洞察力。在这里,我们报告了一种方法来检测组成扭曲双层异质结构的每个单独层中原子的位置和身份。我们开发了一个深度学习模型,Gomb-Net,它可以识别每层中的坐标和原子种类,并对摩尔模式进行反卷积。这使得原子位置和掺杂物分布的层特定映射成为可能,而不像其他常用的分割模型,它们与莫尔海姆诱发的复杂性作斗争。利用这种方法,我们探索了扭曲分数Janus WS2-WS2(1-x)Se2x异质结构中的Se原子取代位分布,发现层特异性植入位不受moir模式的局部能量或电子调制的影响。这一进步使得以前不可能在材料体系中进行原子识别,为以前无法进入的材料物理学开辟了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Atom Identification in Bilayer Moiré Materials with Gomb-Net

Atom Identification in Bilayer Moiré Materials with Gomb-Net

Moiré patterns in van der Waals bilayer materials complicate the analysis of atomic-resolution images, hindering the atomic-scale insight typically attainable with scanning transmission electron microscopy. Here, we report a method to detect the positions and identities of atoms in each of the individual layers that compose twisted bilayer heterostructures. We developed a deep learning model, Gomb-Net, which identifies the coordinates and atomic species in each layer, deconvoluting the moiré pattern. This enables layer-specific mapping of atomic positions and dopant distributions, unlike other commonly used segmentation models which struggle with moiré-induced complexity. Using this approach, we explored the Se atom substitutional site distribution in a twisted fractional Janus WS2-WS2(1–x)Se2x heterostructure and found that layer-specific implantation sites are unaffected by the moiré pattern’s local energetic or electronic modulation. This advancement enables atom identification within material regimes where it was not possible before, opening new insights into previously inaccessible material physics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信