通过不同激励方法揭示非对称光子晶体微环的谐振模式特性

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ruoxin Wu, Bo Chen*, Dong Liu, Guixin Qiu, Zhuojun Liu, Dunzhao Wei and Jin Liu, 
{"title":"通过不同激励方法揭示非对称光子晶体微环的谐振模式特性","authors":"Ruoxin Wu,&nbsp;Bo Chen*,&nbsp;Dong Liu,&nbsp;Guixin Qiu,&nbsp;Zhuojun Liu,&nbsp;Dunzhao Wei and Jin Liu,&nbsp;","doi":"10.1021/acs.nanolett.5c0226410.1021/acs.nanolett.5c02264","DOIUrl":null,"url":null,"abstract":"<p >The photonic crystal (PhC)-modulated microring resonator enables engineered dispersion, the formation of photonic bandgap, enhanced slow light effects, making it attractive platform for nonlinear optics, optical sensing, or quantum photonics. Recently, symmetry-breaking PhC microrings have shown promise for realizing miniature bound states in the continuum (BICs), but challenges remain, including limited <i>Q</i>-factor and an incomplete understanding of the radiated mode patterns. Here, we present a comprehensive investigation of the resonant modes in asymmetric PhC microrings by employing various excitation methods. Our results show that the radiation from the dielectric band modes carries orbital angular momentum, with its characteristics strongly influenced by asymmetric parameters. Moreover, the quasi-BIC mode achieves a <i>Q</i>-factor exceeding 3 × 10<sup>3</sup>, allowing temperature detection with a sensitivity of up to 32.2 pm/°C. This work advances the understanding of light confinement and radiation control in PhC microring, with implications for on-chip optical sensing and structured beam generation.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"25 23","pages":"9501–9507 9501–9507"},"PeriodicalIF":9.1000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revealing Resonant Mode Properties in Asymmetric Photonic Crystal Microrings through Diverse Excitation Methods\",\"authors\":\"Ruoxin Wu,&nbsp;Bo Chen*,&nbsp;Dong Liu,&nbsp;Guixin Qiu,&nbsp;Zhuojun Liu,&nbsp;Dunzhao Wei and Jin Liu,&nbsp;\",\"doi\":\"10.1021/acs.nanolett.5c0226410.1021/acs.nanolett.5c02264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The photonic crystal (PhC)-modulated microring resonator enables engineered dispersion, the formation of photonic bandgap, enhanced slow light effects, making it attractive platform for nonlinear optics, optical sensing, or quantum photonics. Recently, symmetry-breaking PhC microrings have shown promise for realizing miniature bound states in the continuum (BICs), but challenges remain, including limited <i>Q</i>-factor and an incomplete understanding of the radiated mode patterns. Here, we present a comprehensive investigation of the resonant modes in asymmetric PhC microrings by employing various excitation methods. Our results show that the radiation from the dielectric band modes carries orbital angular momentum, with its characteristics strongly influenced by asymmetric parameters. Moreover, the quasi-BIC mode achieves a <i>Q</i>-factor exceeding 3 × 10<sup>3</sup>, allowing temperature detection with a sensitivity of up to 32.2 pm/°C. This work advances the understanding of light confinement and radiation control in PhC microring, with implications for on-chip optical sensing and structured beam generation.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"25 23\",\"pages\":\"9501–9507 9501–9507\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c02264\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.5c02264","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

光子晶体(PhC)调制微环谐振器能够实现工程色散,形成光子带隙,增强慢光效应,使其成为非线性光学,光学传感或量子光子学的有吸引力的平台。最近,对称破缺PhC微环显示出在连续介质(bic)中实现微型束缚态的希望,但仍然存在挑战,包括有限的q因子和对辐射模式的不完全理解。本文采用不同的激励方法,对非对称PhC微环的谐振模式进行了全面的研究。结果表明,介电带模式的辐射携带轨道角动量,其特性受非对称参数的强烈影响。此外,准bic模式实现了超过3 × 103的q因子,允许温度检测灵敏度高达32.2 pm/°C。这项工作促进了对PhC微环中的光约束和辐射控制的理解,对片上光学传感和结构光束产生具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Revealing Resonant Mode Properties in Asymmetric Photonic Crystal Microrings through Diverse Excitation Methods

Revealing Resonant Mode Properties in Asymmetric Photonic Crystal Microrings through Diverse Excitation Methods

The photonic crystal (PhC)-modulated microring resonator enables engineered dispersion, the formation of photonic bandgap, enhanced slow light effects, making it attractive platform for nonlinear optics, optical sensing, or quantum photonics. Recently, symmetry-breaking PhC microrings have shown promise for realizing miniature bound states in the continuum (BICs), but challenges remain, including limited Q-factor and an incomplete understanding of the radiated mode patterns. Here, we present a comprehensive investigation of the resonant modes in asymmetric PhC microrings by employing various excitation methods. Our results show that the radiation from the dielectric band modes carries orbital angular momentum, with its characteristics strongly influenced by asymmetric parameters. Moreover, the quasi-BIC mode achieves a Q-factor exceeding 3 × 103, allowing temperature detection with a sensitivity of up to 32.2 pm/°C. This work advances the understanding of light confinement and radiation control in PhC microring, with implications for on-chip optical sensing and structured beam generation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信