生物质天然结构在类芬顿反应中的功能碳基催化剂研究

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Wenjie Tian, Jingkai Lin, Zhihao Tian, Selusiwe Ncube, Huayang Zhang, Emiliano Cortés, Hongqi Sun, Shaobin Wang
{"title":"生物质天然结构在类芬顿反应中的功能碳基催化剂研究","authors":"Wenjie Tian, Jingkai Lin, Zhihao Tian, Selusiwe Ncube, Huayang Zhang, Emiliano Cortés, Hongqi Sun, Shaobin Wang","doi":"10.1002/adfm.202508759","DOIUrl":null,"url":null,"abstract":"Advancing biomass-derived carbon materials requires a systematic understanding of how distinct biomass structures influence their properties and functionality. To address this, eight 2D flaky and 1D acicular plant biomasses is systematically compared to synthesize pristine carbon, N-doped carbon, and cobalt/graphitic carbon for Fenton-like peroxymonosulfate (PMS) activation. Biomass pyrolysis under 5% NH₃ generates surface N-doped amorphous carbon, facilitating a selective electron transfer pathway (ETP), where high N incorporation, specific surface area, and atomic-level control over O groups synergistically enhance its efficiency. While COOH groups contribute positively, excessive defects and C═O groups hinder ETP performance. Notably, compared to 2D biomass, 1D acicular biomass induces tubular carbon with lower C═O content, promoting the ETP regime. 2D flaky biomass facilitates Co nanoparticle incorporation in cobalt/graphitic carbon, where high contents of N, Co, defects, and oxygen groups (C═O/C─O/COOH) enhance sulfate radical (SO<sub>4</sub><sup>•−</sup>)-dominated catalysis, whereas excessive sp<sup>2</sup> C (&gt;75–80 at.%) negatively affects performance. Through structural characterization, mechanistic analysis, and quantitative linear fitting correlations, this study identifies biomass-derived key active site interactions governing electron transfer and SO<sub>4</sub><sup>•−</sup>-driven oxidation mechanisms. These insights establish a framework for sustainable, biomass-structure-driven carbon design for environmental catalysis.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"588 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biomass Native Structure Into Functional Carbon-Based Catalysts for Fenton-Like Reactions\",\"authors\":\"Wenjie Tian, Jingkai Lin, Zhihao Tian, Selusiwe Ncube, Huayang Zhang, Emiliano Cortés, Hongqi Sun, Shaobin Wang\",\"doi\":\"10.1002/adfm.202508759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advancing biomass-derived carbon materials requires a systematic understanding of how distinct biomass structures influence their properties and functionality. To address this, eight 2D flaky and 1D acicular plant biomasses is systematically compared to synthesize pristine carbon, N-doped carbon, and cobalt/graphitic carbon for Fenton-like peroxymonosulfate (PMS) activation. Biomass pyrolysis under 5% NH₃ generates surface N-doped amorphous carbon, facilitating a selective electron transfer pathway (ETP), where high N incorporation, specific surface area, and atomic-level control over O groups synergistically enhance its efficiency. While COOH groups contribute positively, excessive defects and C═O groups hinder ETP performance. Notably, compared to 2D biomass, 1D acicular biomass induces tubular carbon with lower C═O content, promoting the ETP regime. 2D flaky biomass facilitates Co nanoparticle incorporation in cobalt/graphitic carbon, where high contents of N, Co, defects, and oxygen groups (C═O/C─O/COOH) enhance sulfate radical (SO<sub>4</sub><sup>•−</sup>)-dominated catalysis, whereas excessive sp<sup>2</sup> C (&gt;75–80 at.%) negatively affects performance. Through structural characterization, mechanistic analysis, and quantitative linear fitting correlations, this study identifies biomass-derived key active site interactions governing electron transfer and SO<sub>4</sub><sup>•−</sup>-driven oxidation mechanisms. These insights establish a framework for sustainable, biomass-structure-driven carbon design for environmental catalysis.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"588 1\",\"pages\":\"\"},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202508759\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202508759","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

推进生物质衍生碳材料需要系统地了解不同的生物质结构如何影响其性质和功能。为了解决这个问题,系统地比较了8种二维片状和一维针状植物生物量,以合成原始碳,n掺杂碳和钴/石墨碳进行芬顿样过氧单硫酸盐(PMS)活化。5% NH₃作用下的生物质热解产生表面N掺杂的无定形碳,促进选择性电子转移途径(ETP),其中高N掺杂、比表面积和对O基团的原子水平控制协同提高了其效率。虽然COOH组有积极的贡献,但过多的缺陷和C = O组阻碍了ETP的性能。值得注意的是,与2D生物量相比,1D针状生物量诱导出C = O含量较低的管状碳,促进了ETP机制。2D片状生物质有利于Co纳米颗粒在钴/石墨碳中的掺入,其中高含量的N、Co、缺陷和氧基团(C = O/C─O/COOH)增强了硫酸盐自由基(SO4•−)主导的催化作用,而过量的sp2 C (> 75-80 at.%)会对性能产生负面影响。通过结构表征、机理分析和定量线性拟合相关性,本研究确定了生物质衍生的关键活性位点相互作用控制电子转移和SO4•−驱动的氧化机制。这些见解为可持续的、生物质结构驱动的环境催化碳设计建立了框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Biomass Native Structure Into Functional Carbon-Based Catalysts for Fenton-Like Reactions

Biomass Native Structure Into Functional Carbon-Based Catalysts for Fenton-Like Reactions
Advancing biomass-derived carbon materials requires a systematic understanding of how distinct biomass structures influence their properties and functionality. To address this, eight 2D flaky and 1D acicular plant biomasses is systematically compared to synthesize pristine carbon, N-doped carbon, and cobalt/graphitic carbon for Fenton-like peroxymonosulfate (PMS) activation. Biomass pyrolysis under 5% NH₃ generates surface N-doped amorphous carbon, facilitating a selective electron transfer pathway (ETP), where high N incorporation, specific surface area, and atomic-level control over O groups synergistically enhance its efficiency. While COOH groups contribute positively, excessive defects and C═O groups hinder ETP performance. Notably, compared to 2D biomass, 1D acicular biomass induces tubular carbon with lower C═O content, promoting the ETP regime. 2D flaky biomass facilitates Co nanoparticle incorporation in cobalt/graphitic carbon, where high contents of N, Co, defects, and oxygen groups (C═O/C─O/COOH) enhance sulfate radical (SO4•−)-dominated catalysis, whereas excessive sp2 C (>75–80 at.%) negatively affects performance. Through structural characterization, mechanistic analysis, and quantitative linear fitting correlations, this study identifies biomass-derived key active site interactions governing electron transfer and SO4•−-driven oxidation mechanisms. These insights establish a framework for sustainable, biomass-structure-driven carbon design for environmental catalysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信