基于ReS2/h-BN/石墨烯异质结构的高精度多比特光电突触节能和高精度神经形态计算

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zheyu Yang, Shida Huo, Zhe Zhang, Fanying Meng, Baiyan Liu, Yue Wang, Yuexuan Ma, Zhiyuan Wang, Junxi Xu, Qijia Tian, Yaohui Wang, Yingxuan Ding, Xiaodong Hu, Yuan Xie, Shuangqing Fan, Caofeng Pan, Enxiu Wu
{"title":"基于ReS2/h-BN/石墨烯异质结构的高精度多比特光电突触节能和高精度神经形态计算","authors":"Zheyu Yang, Shida Huo, Zhe Zhang, Fanying Meng, Baiyan Liu, Yue Wang, Yuexuan Ma, Zhiyuan Wang, Junxi Xu, Qijia Tian, Yaohui Wang, Yingxuan Ding, Xiaodong Hu, Yuan Xie, Shuangqing Fan, Caofeng Pan, Enxiu Wu","doi":"10.1002/adfm.202509119","DOIUrl":null,"url":null,"abstract":"Neuromorphic computing integrates sensing, memory, and computation to surpass the von Neumann bottleneck. Opto-electronic synapses, capable of handling both optical and electrical signals, closely emulate biological synapses and enable advanced neuromorphic functionalities. Among them, optoelectronic floating-gate transistors (OEFGTs) based on 2D van der Waals (vdW) heterostructures offer high bandwidth, minimal crosstalk, and multilevel data storage. However, improving optical synaptic weights remains crucial for enhancing learning efficiency and reducing power consumption. In this study, an OEFGT-based opto-electronic synapse using a rhenium disulfide/hexagonal boron nitride/graphene (ReS₂/h-BN/Gra) vdW heterostructure is demonstrated. This device achieves unprecedented high-precision multibit optical synaptic weights, reaching 1024 discrete levels (10-bit resolution)—the highest reported for 2D-material-based OEFGTs. Consequently, it realizes ultra-low energy consumption (500 fJ/spike) and various synaptic behaviors, including electrical and optical paired-pulse facilitation, depression, and spike-timing-dependent plasticity. Furthermore, the device successfully mimics classical conditioning (Pavlov's dog experiment), and primate associative learning, and performs reconfigurable logic operations (“AND”, “OR”, and “NIMP”). An optoelectronic neural network incorporating this synapse achieved 98.8% accuracy after 200 epochs in a color vision recognition task. This work highlights significant potential for OEFGT-based optoelectronic synapses with multibit optical weights in energy-efficient, high-performance neuromorphic computing.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"26 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Precision Multibit Opto-Electronic Synapses Based on ReS2/h-BN/Graphene Heterostructure for Energy-Efficient and High-Accuracy Neuromorphic Computing\",\"authors\":\"Zheyu Yang, Shida Huo, Zhe Zhang, Fanying Meng, Baiyan Liu, Yue Wang, Yuexuan Ma, Zhiyuan Wang, Junxi Xu, Qijia Tian, Yaohui Wang, Yingxuan Ding, Xiaodong Hu, Yuan Xie, Shuangqing Fan, Caofeng Pan, Enxiu Wu\",\"doi\":\"10.1002/adfm.202509119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neuromorphic computing integrates sensing, memory, and computation to surpass the von Neumann bottleneck. Opto-electronic synapses, capable of handling both optical and electrical signals, closely emulate biological synapses and enable advanced neuromorphic functionalities. Among them, optoelectronic floating-gate transistors (OEFGTs) based on 2D van der Waals (vdW) heterostructures offer high bandwidth, minimal crosstalk, and multilevel data storage. However, improving optical synaptic weights remains crucial for enhancing learning efficiency and reducing power consumption. In this study, an OEFGT-based opto-electronic synapse using a rhenium disulfide/hexagonal boron nitride/graphene (ReS₂/h-BN/Gra) vdW heterostructure is demonstrated. This device achieves unprecedented high-precision multibit optical synaptic weights, reaching 1024 discrete levels (10-bit resolution)—the highest reported for 2D-material-based OEFGTs. Consequently, it realizes ultra-low energy consumption (500 fJ/spike) and various synaptic behaviors, including electrical and optical paired-pulse facilitation, depression, and spike-timing-dependent plasticity. Furthermore, the device successfully mimics classical conditioning (Pavlov's dog experiment), and primate associative learning, and performs reconfigurable logic operations (“AND”, “OR”, and “NIMP”). An optoelectronic neural network incorporating this synapse achieved 98.8% accuracy after 200 epochs in a color vision recognition task. This work highlights significant potential for OEFGT-based optoelectronic synapses with multibit optical weights in energy-efficient, high-performance neuromorphic computing.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202509119\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202509119","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

神经形态计算集成了感知、记忆和计算,超越了冯·诺伊曼瓶颈。光电突触,能够处理光和电信号,密切模仿生物突触和实现先进的神经形态功能。其中,基于二维范德华(vdW)异质结构的光电浮栅晶体管(OEFGTs)具有高带宽、最小串扰和多电平数据存储等优点。然而,提高光学突触的权重对于提高学习效率和降低功耗仍然至关重要。在这项研究中,利用二硫化铼/六方氮化硼/石墨烯(ReS₂/h-BN/Gra) vdW异质结构,证明了基于oefgs的光电突触。该设备实现了前所未有的高精度多比特光学突触权重,达到1024个离散电平(10位分辨率),这是基于2d材料的oefgt的最高报道。因此,它实现了超低能量消耗(500 fJ/尖峰)和各种突触行为,包括电光对脉冲促进、抑制和尖峰时间依赖的可塑性。此外,该设备成功地模仿了经典条件反射(巴甫洛夫狗实验)和灵长类动物的联想学习,并执行了可重构的逻辑操作(“与”、“或”和“NIMP”)。结合该突触的光电神经网络在彩色视觉识别任务中,经过200次迭代,准确率达到98.8%。这项工作强调了具有多比特光权的基于oefgt的光电突触在节能、高性能神经形态计算中的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High-Precision Multibit Opto-Electronic Synapses Based on ReS2/h-BN/Graphene Heterostructure for Energy-Efficient and High-Accuracy Neuromorphic Computing

High-Precision Multibit Opto-Electronic Synapses Based on ReS2/h-BN/Graphene Heterostructure for Energy-Efficient and High-Accuracy Neuromorphic Computing
Neuromorphic computing integrates sensing, memory, and computation to surpass the von Neumann bottleneck. Opto-electronic synapses, capable of handling both optical and electrical signals, closely emulate biological synapses and enable advanced neuromorphic functionalities. Among them, optoelectronic floating-gate transistors (OEFGTs) based on 2D van der Waals (vdW) heterostructures offer high bandwidth, minimal crosstalk, and multilevel data storage. However, improving optical synaptic weights remains crucial for enhancing learning efficiency and reducing power consumption. In this study, an OEFGT-based opto-electronic synapse using a rhenium disulfide/hexagonal boron nitride/graphene (ReS₂/h-BN/Gra) vdW heterostructure is demonstrated. This device achieves unprecedented high-precision multibit optical synaptic weights, reaching 1024 discrete levels (10-bit resolution)—the highest reported for 2D-material-based OEFGTs. Consequently, it realizes ultra-low energy consumption (500 fJ/spike) and various synaptic behaviors, including electrical and optical paired-pulse facilitation, depression, and spike-timing-dependent plasticity. Furthermore, the device successfully mimics classical conditioning (Pavlov's dog experiment), and primate associative learning, and performs reconfigurable logic operations (“AND”, “OR”, and “NIMP”). An optoelectronic neural network incorporating this synapse achieved 98.8% accuracy after 200 epochs in a color vision recognition task. This work highlights significant potential for OEFGT-based optoelectronic synapses with multibit optical weights in energy-efficient, high-performance neuromorphic computing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信