Wenhan Yan, Xiaodong Zheng, Wenjun Wen, Liangliang Lu, Yifeng Du, Yan-Qing Lu, Shining Zhu, Xiao-Song Ma
{"title":"基于光频梳的独立于测量设备的量子密钥分配网络","authors":"Wenhan Yan, Xiaodong Zheng, Wenjun Wen, Liangliang Lu, Yifeng Du, Yan-Qing Lu, Shining Zhu, Xiao-Song Ma","doi":"10.1038/s41534-025-01052-7","DOIUrl":null,"url":null,"abstract":"<p>Quantum key distribution (QKD), which promises secure key exchange between two remote parties, is now moving toward the realization of scalable and secure QKD networks (QNs). Fully connected, trusted node-free QNs have been realized based on entanglement distribution, in which the low key rate and the large overhead make their practical application challenging. Here, we experimentally demonstrate a fully connected multi-user QKD network based on a wavelength-multiplexed measurement-device-independent (MDI) QKD protocol. By combining the MDI-QKD protocol with integrated optical frequency combs, we achieve an average secure key rate of 267 bits per second for about 30 dB of link attenuation per user pair—more than three orders of magnitude higher than previous entanglement-based works. More importantly, we realize communication between two different pairs of users simultaneously. Our work paves the way for the realization of large-scale QKD networks with full connectivity and simultaneous communication capability among multiple users.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"41 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A measurement-device-independent quantum key distribution network using optical frequency comb\",\"authors\":\"Wenhan Yan, Xiaodong Zheng, Wenjun Wen, Liangliang Lu, Yifeng Du, Yan-Qing Lu, Shining Zhu, Xiao-Song Ma\",\"doi\":\"10.1038/s41534-025-01052-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Quantum key distribution (QKD), which promises secure key exchange between two remote parties, is now moving toward the realization of scalable and secure QKD networks (QNs). Fully connected, trusted node-free QNs have been realized based on entanglement distribution, in which the low key rate and the large overhead make their practical application challenging. Here, we experimentally demonstrate a fully connected multi-user QKD network based on a wavelength-multiplexed measurement-device-independent (MDI) QKD protocol. By combining the MDI-QKD protocol with integrated optical frequency combs, we achieve an average secure key rate of 267 bits per second for about 30 dB of link attenuation per user pair—more than three orders of magnitude higher than previous entanglement-based works. More importantly, we realize communication between two different pairs of users simultaneously. Our work paves the way for the realization of large-scale QKD networks with full connectivity and simultaneous communication capability among multiple users.</p>\",\"PeriodicalId\":19212,\"journal\":{\"name\":\"npj Quantum Information\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Quantum Information\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41534-025-01052-7\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-025-01052-7","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
A measurement-device-independent quantum key distribution network using optical frequency comb
Quantum key distribution (QKD), which promises secure key exchange between two remote parties, is now moving toward the realization of scalable and secure QKD networks (QNs). Fully connected, trusted node-free QNs have been realized based on entanglement distribution, in which the low key rate and the large overhead make their practical application challenging. Here, we experimentally demonstrate a fully connected multi-user QKD network based on a wavelength-multiplexed measurement-device-independent (MDI) QKD protocol. By combining the MDI-QKD protocol with integrated optical frequency combs, we achieve an average secure key rate of 267 bits per second for about 30 dB of link attenuation per user pair—more than three orders of magnitude higher than previous entanglement-based works. More importantly, we realize communication between two different pairs of users simultaneously. Our work paves the way for the realization of large-scale QKD networks with full connectivity and simultaneous communication capability among multiple users.
期刊介绍:
The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.