全固态电池阴极微结构优化的离散元模型参数灵敏度分析与标定

IF 5.5 3区 材料科学 Q1 ELECTROCHEMISTRY
Ali Mohammad Bazzoun , Javid Piruzjam , Steffen Hink , Lukas Rubacek , Alexander Fill , Thomas Carraro , Kai Peter Birke
{"title":"全固态电池阴极微结构优化的离散元模型参数灵敏度分析与标定","authors":"Ali Mohammad Bazzoun ,&nbsp;Javid Piruzjam ,&nbsp;Steffen Hink ,&nbsp;Lukas Rubacek ,&nbsp;Alexander Fill ,&nbsp;Thomas Carraro ,&nbsp;Kai Peter Birke","doi":"10.1016/j.electacta.2025.146536","DOIUrl":null,"url":null,"abstract":"<div><div>This study develops and evaluates a Discrete Element Method (DEM) model designed to simulate the produced cathode composite microstructures during uniaxial cold-pressing of All-Solid-State-Battery (ASSB) electrodes. The research primarily investigates how variations in model input parameters – such as particle size distribution, interparticle friction, and mechanical properties – affect critical performance indicators, including cathode active material (CAM) utilization (<span><math><msub><mrow><mi>θ</mi></mrow><mrow><mtext>CAM</mtext></mrow></msub></math></span>), packing behavior, porosity (<span><math><mi>ϵ</mi></math></span>), and solid electrolyte (SE) utilization (<span><math><msub><mrow><mi>θ</mi></mrow><mrow><mtext>SE</mtext></mrow></msub></math></span>), contributing to network formation and ionic percolation within DEM-generated composite cathodes. A comprehensive parameter sensitivity analysis highlights that frictional interactions are the most influential factors governing particle connectivity, percolation, and porosity, especially at higher CAM loadings (<span><math><msub><mrow><mi>f</mi></mrow><mrow><mtext>CAM</mtext></mrow></msub></math></span>). In addition to simulations, experimental measurements were performed to validate the DEM model and further analyze the cathode behavior under varying conditions. Both experimental and simulation results consistently demonstrate that increasing uniaxial pressure enhances discharge capacity by improving particle connectivity. However, while the DEM model exhibits high accuracy at lower <span><math><msub><mrow><mi>f</mi></mrow><mrow><mtext>CAM</mtext></mrow></msub></math></span>, it shows notable discrepancies and increased sensitivity to parameter variations at higher loadings, indicating the need for further refinements to achieve better alignment with experimental observations. This research provides essential insights into optimizing ASSB cathode designs, offering a robust framework for refining DEM models to predict and enhance battery performance under various conditions.</div></div>","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"535 ","pages":"Article 146536"},"PeriodicalIF":5.5000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parameter sensitivity analysis and calibration of a discrete element model for optimizing all-solid-state-battery cathode microstructures\",\"authors\":\"Ali Mohammad Bazzoun ,&nbsp;Javid Piruzjam ,&nbsp;Steffen Hink ,&nbsp;Lukas Rubacek ,&nbsp;Alexander Fill ,&nbsp;Thomas Carraro ,&nbsp;Kai Peter Birke\",\"doi\":\"10.1016/j.electacta.2025.146536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study develops and evaluates a Discrete Element Method (DEM) model designed to simulate the produced cathode composite microstructures during uniaxial cold-pressing of All-Solid-State-Battery (ASSB) electrodes. The research primarily investigates how variations in model input parameters – such as particle size distribution, interparticle friction, and mechanical properties – affect critical performance indicators, including cathode active material (CAM) utilization (<span><math><msub><mrow><mi>θ</mi></mrow><mrow><mtext>CAM</mtext></mrow></msub></math></span>), packing behavior, porosity (<span><math><mi>ϵ</mi></math></span>), and solid electrolyte (SE) utilization (<span><math><msub><mrow><mi>θ</mi></mrow><mrow><mtext>SE</mtext></mrow></msub></math></span>), contributing to network formation and ionic percolation within DEM-generated composite cathodes. A comprehensive parameter sensitivity analysis highlights that frictional interactions are the most influential factors governing particle connectivity, percolation, and porosity, especially at higher CAM loadings (<span><math><msub><mrow><mi>f</mi></mrow><mrow><mtext>CAM</mtext></mrow></msub></math></span>). In addition to simulations, experimental measurements were performed to validate the DEM model and further analyze the cathode behavior under varying conditions. Both experimental and simulation results consistently demonstrate that increasing uniaxial pressure enhances discharge capacity by improving particle connectivity. However, while the DEM model exhibits high accuracy at lower <span><math><msub><mrow><mi>f</mi></mrow><mrow><mtext>CAM</mtext></mrow></msub></math></span>, it shows notable discrepancies and increased sensitivity to parameter variations at higher loadings, indicating the need for further refinements to achieve better alignment with experimental observations. This research provides essential insights into optimizing ASSB cathode designs, offering a robust framework for refining DEM models to predict and enhance battery performance under various conditions.</div></div>\",\"PeriodicalId\":305,\"journal\":{\"name\":\"Electrochimica Acta\",\"volume\":\"535 \",\"pages\":\"Article 146536\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochimica Acta\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013468625008977\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013468625008977","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

本研究开发并评估了一种离散元法(DEM)模型,该模型旨在模拟全固态电池(ASSB)电极在单轴冷压过程中产生的阴极复合材料微观结构。该研究主要研究了模型输入参数(如粒径分布、颗粒间摩擦和机械性能)的变化如何影响关键性能指标,包括阴极活性材料(CAM)利用率(θCAMθCAM)、填充行为、孔隙率(ϵϵ)和固体电解质(SE)利用率(θSEθSE),从而促进dem生成的复合阴极内的网络形成和离子渗透。综合参数敏感性分析强调,摩擦相互作用是影响颗粒连通性、渗透和孔隙度的最重要因素,特别是在较高的CAM负载(fCAMfCAM)下。除了模拟之外,还进行了实验测量来验证DEM模型,并进一步分析了不同条件下阴极的行为。实验和模拟结果一致表明,单轴压力的增加通过改善颗粒连通性来提高放电能力。然而,虽然DEM模型在较低的fCAMfCAM下显示出很强的精度,但在较高的载荷下,它显示出明显的差异和对参数变化的敏感性增加,这表明需要进一步改进以实现与实验观测更好的一致性。这项研究为优化ASSB阴极设计提供了重要的见解,为改进DEM模型提供了一个强大的框架,以预测和提高各种条件下的电池性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Parameter sensitivity analysis and calibration of a discrete element model for optimizing all-solid-state-battery cathode microstructures

Parameter sensitivity analysis and calibration of a discrete element model for optimizing all-solid-state-battery cathode microstructures
This study develops and evaluates a Discrete Element Method (DEM) model designed to simulate the produced cathode composite microstructures during uniaxial cold-pressing of All-Solid-State-Battery (ASSB) electrodes. The research primarily investigates how variations in model input parameters – such as particle size distribution, interparticle friction, and mechanical properties – affect critical performance indicators, including cathode active material (CAM) utilization (θCAM), packing behavior, porosity (ϵ), and solid electrolyte (SE) utilization (θSE), contributing to network formation and ionic percolation within DEM-generated composite cathodes. A comprehensive parameter sensitivity analysis highlights that frictional interactions are the most influential factors governing particle connectivity, percolation, and porosity, especially at higher CAM loadings (fCAM). In addition to simulations, experimental measurements were performed to validate the DEM model and further analyze the cathode behavior under varying conditions. Both experimental and simulation results consistently demonstrate that increasing uniaxial pressure enhances discharge capacity by improving particle connectivity. However, while the DEM model exhibits high accuracy at lower fCAM, it shows notable discrepancies and increased sensitivity to parameter variations at higher loadings, indicating the need for further refinements to achieve better alignment with experimental observations. This research provides essential insights into optimizing ASSB cathode designs, offering a robust framework for refining DEM models to predict and enhance battery performance under various conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electrochimica Acta
Electrochimica Acta 工程技术-电化学
CiteScore
11.30
自引率
6.10%
发文量
1634
审稿时长
41 days
期刊介绍: Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信