{"title":"通过dcas13引导的工程乙酰转移酶靶向RNA乙酰化","authors":"","doi":"10.1038/s41589-025-01923-2","DOIUrl":null,"url":null,"abstract":"We developed a programmable RNA acetylation system by fusing dCas13 with an engineered NAT10 variant, enabling robust and specific installation of N4-acetylcytidine (ac4C) on target RNAs in cultured cells and live animals. This system facilitated functional studies of RNA acetylation and revealed ac4C has a distinct role in regulating transcript subcellular localization.","PeriodicalId":18832,"journal":{"name":"Nature chemical biology","volume":"2 1","pages":""},"PeriodicalIF":12.9000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Targeted RNA acetylation via a dCas13-guided engineered acetyl-transferase\",\"authors\":\"\",\"doi\":\"10.1038/s41589-025-01923-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We developed a programmable RNA acetylation system by fusing dCas13 with an engineered NAT10 variant, enabling robust and specific installation of N4-acetylcytidine (ac4C) on target RNAs in cultured cells and live animals. This system facilitated functional studies of RNA acetylation and revealed ac4C has a distinct role in regulating transcript subcellular localization.\",\"PeriodicalId\":18832,\"journal\":{\"name\":\"Nature chemical biology\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":12.9000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature chemical biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41589-025-01923-2\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41589-025-01923-2","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Targeted RNA acetylation via a dCas13-guided engineered acetyl-transferase
We developed a programmable RNA acetylation system by fusing dCas13 with an engineered NAT10 variant, enabling robust and specific installation of N4-acetylcytidine (ac4C) on target RNAs in cultured cells and live animals. This system facilitated functional studies of RNA acetylation and revealed ac4C has a distinct role in regulating transcript subcellular localization.
期刊介绍:
Nature Chemical Biology stands as an esteemed international monthly journal, offering a prominent platform for the chemical biology community to showcase top-tier original research and commentary. Operating at the crossroads of chemistry, biology, and related disciplines, chemical biology utilizes scientific ideas and approaches to comprehend and manipulate biological systems with molecular precision.
The journal embraces contributions from the growing community of chemical biologists, encompassing insights from chemists applying principles and tools to biological inquiries and biologists striving to comprehend and control molecular-level biological processes. We prioritize studies unveiling significant conceptual or practical advancements in areas where chemistry and biology intersect, emphasizing basic research, especially those reporting novel chemical or biological tools and offering profound molecular-level insights into underlying biological mechanisms.
Nature Chemical Biology also welcomes manuscripts describing applied molecular studies at the chemistry-biology interface due to the broad utility of chemical biology approaches in manipulating or engineering biological systems. Irrespective of scientific focus, we actively seek submissions that creatively blend chemistry and biology, particularly those providing substantial conceptual or methodological breakthroughs with the potential to open innovative research avenues. The journal maintains a robust and impartial review process, emphasizing thorough chemical and biological characterization.