Bhabani Sankar Tripathy, Nilmani Mathur, M. Padmanath
{"title":"利用双介子和双夸克-反双夸克变分基从晶格QCD中得到bsu¯d¯和bsu¯d¯四夸克","authors":"Bhabani Sankar Tripathy, Nilmani Mathur, M. Padmanath","doi":"10.1103/physrevd.111.114504","DOIUrl":null,"url":null,"abstract":"We present a lattice QCD investigation of isoscalar tetraquark systems involving bottom quarks with explicit flavor content b</a:mi>b</a:mi>u</a:mi>¯</a:mo></a:mover>d</a:mi>¯</a:mo></a:mover></a:math> and <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:mi>b</g:mi><g:mi>s</g:mi><g:mover accent=\"true\"><g:mi>u</g:mi><g:mo stretchy=\"false\">¯</g:mo></g:mover><g:mover accent=\"true\"><g:mi>d</g:mi><g:mo stretchy=\"false\">¯</g:mo></g:mover></g:math>. In the doubly bottom sector, the study focuses on axial-vector <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:msup><m:mi>J</m:mi><m:mi>P</m:mi></m:msup><m:mo>=</m:mo><m:msup><m:mn>1</m:mn><m:mo>+</m:mo></m:msup></m:math> quantum numbers, whereas in the <o:math xmlns:o=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><o:mi>b</o:mi><o:mi>s</o:mi><o:mover accent=\"true\"><o:mi>u</o:mi><o:mo stretchy=\"false\">¯</o:mo></o:mover><o:mover accent=\"true\"><o:mi>d</o:mi><o:mo stretchy=\"false\">¯</o:mo></o:mover></o:math> channel, both axial-vector <u:math xmlns:u=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><u:msup><u:mi>J</u:mi><u:mi>P</u:mi></u:msup><u:mo>=</u:mo><u:msup><u:mn>1</u:mn><u:mo>+</u:mo></u:msup></u:math> and scalar <w:math xmlns:w=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><w:msup><w:mi>J</w:mi><w:mi>P</w:mi></w:msup><w:mo>=</w:mo><w:msup><w:mn>0</w:mn><w:mo>+</w:mo></w:msup></w:math> quantum numbers are investigated in search of signatures for possible tetraquark bound states. The calculations are performed on four ensembles with dynamical quark fields up to the charm quark generated by the MILC Collaboration, with lattice spacings ranging from approximately 0.058 to 0.12 fm, and at different values of the valence light quark mass <y:math xmlns:y=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><y:msub><y:mi>m</y:mi><y:mrow><y:mi>u</y:mi><y:mo>/</y:mo><y:mi>d</y:mi></y:mrow></y:msub></y:math>, corresponding to pseudoscalar meson masses, M</ab:mi>p</ab:mi>s</ab:mi></ab:mrow></ab:msub>=</ab:mo>0.5</ab:mn></ab:math>, 0.6, and 0.7 GeV. The energy eigenvalues in the finite volume are determined by applying a variational procedure to correlation matrices constructed from two-meson interpolating operators and diquark-antidiquark operators. Continuum extrapolated elastic <cb:math xmlns:cb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><cb:mi>S</cb:mi></cb:math>-wave scattering amplitudes of <eb:math xmlns:eb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><eb:mi>B</eb:mi><eb:msup><eb:mi>B</eb:mi><eb:mo>*</eb:mo></eb:msup></eb:math>, <gb:math xmlns:gb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><gb:mi>K</gb:mi><gb:msup><gb:mi>B</gb:mi><gb:mo>*</gb:mo></gb:msup></gb:math>, and <ib:math xmlns:ib=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><ib:mi>K</ib:mi><ib:mi>B</ib:mi></ib:math> are extracted from the ground-state eigenenergies following a finite-volume analysis Lüscher. The chiral and continuum extrapolated binding energy estimates for the isoscalar axial-vector doubly bottom tetraquark <kb:math xmlns:kb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><kb:msub><kb:mi>T</kb:mi><kb:mrow><kb:mi>b</kb:mi><kb:mi>b</kb:mi></kb:mrow></kb:msub></kb:math> from the extracted elastic <mb:math xmlns:mb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mb:mrow><mb:mi>B</mb:mi><mb:msup><mb:mrow><mb:mi>B</mb:mi></mb:mrow><mb:mrow><mb:mo>*</mb:mo></mb:mrow></mb:msup></mb:mrow></mb:math> <ob:math xmlns:ob=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><ob:mrow><ob:mi>S</ob:mi></ob:mrow></ob:math>-wave scattering amplitudes is found to be <qb:math xmlns:qb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><qb:mi mathvariant=\"normal\">Δ</qb:mi><qb:msub><qb:mi>E</qb:mi><qb:msub><qb:mi>T</qb:mi><qb:mrow><qb:mi>b</qb:mi><qb:mi>b</qb:mi></qb:mrow></qb:msub></qb:msub><qb:mo stretchy=\"false\">(</qb:mo><qb:msup><qb:mn>1</qb:mn><qb:mo>+</qb:mo></qb:msup><qb:mo stretchy=\"false\">)</qb:mo><qb:mo>=</qb:mo><qb:mo>−</qb:mo><qb:mn>116</qb:mn><qb:msubsup><qb:mo stretchy=\"false\">(</qb:mo><qb:mrow><qb:mo>−</qb:mo><qb:mn>36</qb:mn></qb:mrow><qb:mrow><qb:mo>+</qb:mo><qb:mn>30</qb:mn></qb:mrow></qb:msubsup><qb:mo stretchy=\"false\">)</qb:mo><qb:mtext> </qb:mtext><qb:mtext> </qb:mtext><qb:mi>MeV</qb:mi></qb:math>. In the <xb:math xmlns:xb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><xb:mi>b</xb:mi><xb:mi>s</xb:mi><xb:mover accent=\"true\"><xb:mi>u</xb:mi><xb:mo stretchy=\"false\">¯</xb:mo></xb:mover><xb:mover accent=\"true\"><xb:mi>d</xb:mi><xb:mo stretchy=\"false\">¯</xb:mo></xb:mover></xb:math> system, no statistically significant deviations were observed in the ground-state energies from the respective elastic threshold energies, leading to no conclusive evidence for any bound states. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"11 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"bbu¯d¯ and bsu¯d¯ tetraquarks from lattice QCD using two-meson and diquark-antidiquark variational basis\",\"authors\":\"Bhabani Sankar Tripathy, Nilmani Mathur, M. Padmanath\",\"doi\":\"10.1103/physrevd.111.114504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a lattice QCD investigation of isoscalar tetraquark systems involving bottom quarks with explicit flavor content b</a:mi>b</a:mi>u</a:mi>¯</a:mo></a:mover>d</a:mi>¯</a:mo></a:mover></a:math> and <g:math xmlns:g=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><g:mi>b</g:mi><g:mi>s</g:mi><g:mover accent=\\\"true\\\"><g:mi>u</g:mi><g:mo stretchy=\\\"false\\\">¯</g:mo></g:mover><g:mover accent=\\\"true\\\"><g:mi>d</g:mi><g:mo stretchy=\\\"false\\\">¯</g:mo></g:mover></g:math>. In the doubly bottom sector, the study focuses on axial-vector <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><m:msup><m:mi>J</m:mi><m:mi>P</m:mi></m:msup><m:mo>=</m:mo><m:msup><m:mn>1</m:mn><m:mo>+</m:mo></m:msup></m:math> quantum numbers, whereas in the <o:math xmlns:o=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><o:mi>b</o:mi><o:mi>s</o:mi><o:mover accent=\\\"true\\\"><o:mi>u</o:mi><o:mo stretchy=\\\"false\\\">¯</o:mo></o:mover><o:mover accent=\\\"true\\\"><o:mi>d</o:mi><o:mo stretchy=\\\"false\\\">¯</o:mo></o:mover></o:math> channel, both axial-vector <u:math xmlns:u=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><u:msup><u:mi>J</u:mi><u:mi>P</u:mi></u:msup><u:mo>=</u:mo><u:msup><u:mn>1</u:mn><u:mo>+</u:mo></u:msup></u:math> and scalar <w:math xmlns:w=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><w:msup><w:mi>J</w:mi><w:mi>P</w:mi></w:msup><w:mo>=</w:mo><w:msup><w:mn>0</w:mn><w:mo>+</w:mo></w:msup></w:math> quantum numbers are investigated in search of signatures for possible tetraquark bound states. The calculations are performed on four ensembles with dynamical quark fields up to the charm quark generated by the MILC Collaboration, with lattice spacings ranging from approximately 0.058 to 0.12 fm, and at different values of the valence light quark mass <y:math xmlns:y=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><y:msub><y:mi>m</y:mi><y:mrow><y:mi>u</y:mi><y:mo>/</y:mo><y:mi>d</y:mi></y:mrow></y:msub></y:math>, corresponding to pseudoscalar meson masses, M</ab:mi>p</ab:mi>s</ab:mi></ab:mrow></ab:msub>=</ab:mo>0.5</ab:mn></ab:math>, 0.6, and 0.7 GeV. The energy eigenvalues in the finite volume are determined by applying a variational procedure to correlation matrices constructed from two-meson interpolating operators and diquark-antidiquark operators. Continuum extrapolated elastic <cb:math xmlns:cb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><cb:mi>S</cb:mi></cb:math>-wave scattering amplitudes of <eb:math xmlns:eb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><eb:mi>B</eb:mi><eb:msup><eb:mi>B</eb:mi><eb:mo>*</eb:mo></eb:msup></eb:math>, <gb:math xmlns:gb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><gb:mi>K</gb:mi><gb:msup><gb:mi>B</gb:mi><gb:mo>*</gb:mo></gb:msup></gb:math>, and <ib:math xmlns:ib=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><ib:mi>K</ib:mi><ib:mi>B</ib:mi></ib:math> are extracted from the ground-state eigenenergies following a finite-volume analysis Lüscher. The chiral and continuum extrapolated binding energy estimates for the isoscalar axial-vector doubly bottom tetraquark <kb:math xmlns:kb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><kb:msub><kb:mi>T</kb:mi><kb:mrow><kb:mi>b</kb:mi><kb:mi>b</kb:mi></kb:mrow></kb:msub></kb:math> from the extracted elastic <mb:math xmlns:mb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><mb:mrow><mb:mi>B</mb:mi><mb:msup><mb:mrow><mb:mi>B</mb:mi></mb:mrow><mb:mrow><mb:mo>*</mb:mo></mb:mrow></mb:msup></mb:mrow></mb:math> <ob:math xmlns:ob=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><ob:mrow><ob:mi>S</ob:mi></ob:mrow></ob:math>-wave scattering amplitudes is found to be <qb:math xmlns:qb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><qb:mi mathvariant=\\\"normal\\\">Δ</qb:mi><qb:msub><qb:mi>E</qb:mi><qb:msub><qb:mi>T</qb:mi><qb:mrow><qb:mi>b</qb:mi><qb:mi>b</qb:mi></qb:mrow></qb:msub></qb:msub><qb:mo stretchy=\\\"false\\\">(</qb:mo><qb:msup><qb:mn>1</qb:mn><qb:mo>+</qb:mo></qb:msup><qb:mo stretchy=\\\"false\\\">)</qb:mo><qb:mo>=</qb:mo><qb:mo>−</qb:mo><qb:mn>116</qb:mn><qb:msubsup><qb:mo stretchy=\\\"false\\\">(</qb:mo><qb:mrow><qb:mo>−</qb:mo><qb:mn>36</qb:mn></qb:mrow><qb:mrow><qb:mo>+</qb:mo><qb:mn>30</qb:mn></qb:mrow></qb:msubsup><qb:mo stretchy=\\\"false\\\">)</qb:mo><qb:mtext> </qb:mtext><qb:mtext> </qb:mtext><qb:mi>MeV</qb:mi></qb:math>. In the <xb:math xmlns:xb=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><xb:mi>b</xb:mi><xb:mi>s</xb:mi><xb:mover accent=\\\"true\\\"><xb:mi>u</xb:mi><xb:mo stretchy=\\\"false\\\">¯</xb:mo></xb:mover><xb:mover accent=\\\"true\\\"><xb:mi>d</xb:mi><xb:mo stretchy=\\\"false\\\">¯</xb:mo></xb:mover></xb:math> system, no statistically significant deviations were observed in the ground-state energies from the respective elastic threshold energies, leading to no conclusive evidence for any bound states. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.111.114504\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.114504","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
bbu¯d¯ and bsu¯d¯ tetraquarks from lattice QCD using two-meson and diquark-antidiquark variational basis
We present a lattice QCD investigation of isoscalar tetraquark systems involving bottom quarks with explicit flavor content bbu¯d¯ and bsu¯d¯. In the doubly bottom sector, the study focuses on axial-vector JP=1+ quantum numbers, whereas in the bsu¯d¯ channel, both axial-vector JP=1+ and scalar JP=0+ quantum numbers are investigated in search of signatures for possible tetraquark bound states. The calculations are performed on four ensembles with dynamical quark fields up to the charm quark generated by the MILC Collaboration, with lattice spacings ranging from approximately 0.058 to 0.12 fm, and at different values of the valence light quark mass mu/d, corresponding to pseudoscalar meson masses, Mps=0.5, 0.6, and 0.7 GeV. The energy eigenvalues in the finite volume are determined by applying a variational procedure to correlation matrices constructed from two-meson interpolating operators and diquark-antidiquark operators. Continuum extrapolated elastic S-wave scattering amplitudes of BB*, KB*, and KB are extracted from the ground-state eigenenergies following a finite-volume analysis Lüscher. The chiral and continuum extrapolated binding energy estimates for the isoscalar axial-vector doubly bottom tetraquark Tbb from the extracted elastic BB*S-wave scattering amplitudes is found to be ΔETbb(1+)=−116(−36+30)MeV. In the bsu¯d¯ system, no statistically significant deviations were observed in the ground-state energies from the respective elastic threshold energies, leading to no conclusive evidence for any bound states. Published by the American Physical Society2025
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.