Alexey V. Ivanov, Arseniy S. Burov, Semyon D. Shraer, Nikita D. Luchinin, Dmitry A. Aksyonov and Stanislav S. Fedotov
{"title":"在新型ktiopo4结构的LiVPO4F中解锁“钉住”Li+离子可实现卓越的储能性能","authors":"Alexey V. Ivanov, Arseniy S. Burov, Semyon D. Shraer, Nikita D. Luchinin, Dmitry A. Aksyonov and Stanislav S. Fedotov","doi":"10.1039/D5TA01871D","DOIUrl":null,"url":null,"abstract":"<p >This study showcases the successful use of an elegant solid-state ion-exchange method to synthesize a KTiOPO<small><sub>4</sub></small>-structured lithium–vanadium fluoride phosphate (KTP-LiVPO<small><sub>4</sub></small>F), an electrode material yet unattainable through conventional synthesis routes. It demonstrates promising activity in the low-voltage domain, achieving a reversible capacity of 137 mA h g<small><sup>−1</sup></small>, however, in the high-voltage region, it exhibits only 68 mA h g<small><sup>−1</sup></small> due to high activation barriers at certain Li sites. Introducing ∼15% of Na ions into the crystal structure of KTP-Li<small><sub>1−<em>x</em></sub></small>Na<small><sub><em>x</em></sub></small>VPO<small><sub>4</sub></small>F improves specific capacity up to 116 mA h g<small><sup>−1</sup></small> at an average potential of ∼4.0 V <em>vs.</em> Li<small><sup>+</sup></small>/Li. Density functional theory calculations suggest that Na ions partially occupy the “pinned” lithium sites, lowering activation energies which is further supported by molecular dynamics simulations as to increasing diffusion coefficients in Li<small><sub>0.875</sub></small>Na<small><sub>0.125</sub></small>VPO<small><sub>4</sub></small>F. Finally, we demonstrate that co-cycling Li and Na ions within the VPO<small><sub>4</sub></small>F framework provides a reversible capacity of about 128 mA h g<small><sup>−1</sup></small> at an elevated average potential of ∼4.2 V <em>vs.</em> Li<small><sup>+</sup></small>/Li. These findings pave the way for developing a novel concept of stable hybrid Li/Na-ion batteries with enhanced energy density, and also reveal an attractive strategy for using the “pillar” effect to increase the specific energy of electrode materials.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 28","pages":" 22621-22636"},"PeriodicalIF":9.5000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unblocking “pinned” Li+ ions in novel KTiOPO4-structured LiVPO4F enables superior energy storage performance†\",\"authors\":\"Alexey V. Ivanov, Arseniy S. Burov, Semyon D. Shraer, Nikita D. Luchinin, Dmitry A. Aksyonov and Stanislav S. Fedotov\",\"doi\":\"10.1039/D5TA01871D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This study showcases the successful use of an elegant solid-state ion-exchange method to synthesize a KTiOPO<small><sub>4</sub></small>-structured lithium–vanadium fluoride phosphate (KTP-LiVPO<small><sub>4</sub></small>F), an electrode material yet unattainable through conventional synthesis routes. It demonstrates promising activity in the low-voltage domain, achieving a reversible capacity of 137 mA h g<small><sup>−1</sup></small>, however, in the high-voltage region, it exhibits only 68 mA h g<small><sup>−1</sup></small> due to high activation barriers at certain Li sites. Introducing ∼15% of Na ions into the crystal structure of KTP-Li<small><sub>1−<em>x</em></sub></small>Na<small><sub><em>x</em></sub></small>VPO<small><sub>4</sub></small>F improves specific capacity up to 116 mA h g<small><sup>−1</sup></small> at an average potential of ∼4.0 V <em>vs.</em> Li<small><sup>+</sup></small>/Li. Density functional theory calculations suggest that Na ions partially occupy the “pinned” lithium sites, lowering activation energies which is further supported by molecular dynamics simulations as to increasing diffusion coefficients in Li<small><sub>0.875</sub></small>Na<small><sub>0.125</sub></small>VPO<small><sub>4</sub></small>F. Finally, we demonstrate that co-cycling Li and Na ions within the VPO<small><sub>4</sub></small>F framework provides a reversible capacity of about 128 mA h g<small><sup>−1</sup></small> at an elevated average potential of ∼4.2 V <em>vs.</em> Li<small><sup>+</sup></small>/Li. These findings pave the way for developing a novel concept of stable hybrid Li/Na-ion batteries with enhanced energy density, and also reveal an attractive strategy for using the “pillar” effect to increase the specific energy of electrode materials.</p>\",\"PeriodicalId\":82,\"journal\":{\"name\":\"Journal of Materials Chemistry A\",\"volume\":\" 28\",\"pages\":\" 22621-22636\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry A\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d5ta01871d\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ta/d5ta01871d","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
这项研究展示了一种优雅的固态离子交换方法成功地合成了ktiopo4结构的氟化锂钒磷酸盐,这是一种通过传统合成途径无法获得的电极材料。它在低压区域显示出良好的活性,达到137 mAh g−1的可逆容量,然而,在高压区域,由于某些Li位点的高激活势垒,它仅显示68 mAh g−1。在KTP-Li1−xNaxVPO4F晶体结构中引入~15%的Na离子,在~4.0 V的平均电位下,与Li+/Li相比,其比容量可提高至116 mAh g−1。密度泛函理论计算表明,Na离子部分占据了“固定”的锂离子位置,降低了活化能,分子动力学模拟进一步支持了这一观点,即Li0.875Na0.125VPO4F中扩散系数的增加。最后,我们证明了在VPO4F框架内共循环Li和Na离子与Li+/Li相比,在~4.2 V的平均电位下提供了约128 mAh g−1的可逆容量。这些发现为开发具有增强能量密度的稳定混合锂/钠离子电池的新概念铺平了道路,也揭示了利用“柱”效应增加电极材料比能量的有吸引力的策略。
Unblocking “pinned” Li+ ions in novel KTiOPO4-structured LiVPO4F enables superior energy storage performance†
This study showcases the successful use of an elegant solid-state ion-exchange method to synthesize a KTiOPO4-structured lithium–vanadium fluoride phosphate (KTP-LiVPO4F), an electrode material yet unattainable through conventional synthesis routes. It demonstrates promising activity in the low-voltage domain, achieving a reversible capacity of 137 mA h g−1, however, in the high-voltage region, it exhibits only 68 mA h g−1 due to high activation barriers at certain Li sites. Introducing ∼15% of Na ions into the crystal structure of KTP-Li1−xNaxVPO4F improves specific capacity up to 116 mA h g−1 at an average potential of ∼4.0 V vs. Li+/Li. Density functional theory calculations suggest that Na ions partially occupy the “pinned” lithium sites, lowering activation energies which is further supported by molecular dynamics simulations as to increasing diffusion coefficients in Li0.875Na0.125VPO4F. Finally, we demonstrate that co-cycling Li and Na ions within the VPO4F framework provides a reversible capacity of about 128 mA h g−1 at an elevated average potential of ∼4.2 V vs. Li+/Li. These findings pave the way for developing a novel concept of stable hybrid Li/Na-ion batteries with enhanced energy density, and also reveal an attractive strategy for using the “pillar” effect to increase the specific energy of electrode materials.
期刊介绍:
The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.