Pablo Gimenez-Gomez, Timmy Le, Max Zinter, Peter M’Angale, Violeta Duran-Laforet, Timothy G. Freels, Rebecca Pavchinskiy, Susanna Molas, Dorothy P. Schafer, Andrew R. Tapper, Travis Thomson, Gilles E. Martin
{"title":"小鼠内侧眶额叶皮质抑制神经元集合对酗酒的抑制","authors":"Pablo Gimenez-Gomez, Timmy Le, Max Zinter, Peter M’Angale, Violeta Duran-Laforet, Timothy G. Freels, Rebecca Pavchinskiy, Susanna Molas, Dorothy P. Schafer, Andrew R. Tapper, Travis Thomson, Gilles E. Martin","doi":"10.1038/s41593-025-01970-x","DOIUrl":null,"url":null,"abstract":"<p>Alcohol consumption remains a significant global health challenge, directly and indirectly causing millions of deaths annually. Alcohol abuse causes dysregulated activity of the prefrontal cortex, yet effects on specific prefrontal circuits remain to be elucidated. Here, we identify a discrete GABAergic neuronal ensemble in the mouse medial orbitofrontal cortex (mOFC) that is selectively recruited in response to binge alcohol drinking and limits further drinking behavior. Optogenetic silencing of this population, or its ablation, results in uncontrolled binge alcohol consumption. This neuronal ensemble is specific to alcohol and is not recruited by other rewarding substances. Neurons in this ensemble project widely throughout the brain, but projections specifically to the mediodorsal thalamus regulate binge alcohol drinking. Together, these results identify a brain circuit in the mOFC that serves to protect against binge drinking by reducing alcohol intake, which may offer avenues for the development of mOFC neuronal ensemble-targeted interventions.</p>","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":"21 1","pages":""},"PeriodicalIF":21.2000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Suppression of binge alcohol drinking by an inhibitory neuronal ensemble in the mouse medial orbitofrontal cortex\",\"authors\":\"Pablo Gimenez-Gomez, Timmy Le, Max Zinter, Peter M’Angale, Violeta Duran-Laforet, Timothy G. Freels, Rebecca Pavchinskiy, Susanna Molas, Dorothy P. Schafer, Andrew R. Tapper, Travis Thomson, Gilles E. Martin\",\"doi\":\"10.1038/s41593-025-01970-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Alcohol consumption remains a significant global health challenge, directly and indirectly causing millions of deaths annually. Alcohol abuse causes dysregulated activity of the prefrontal cortex, yet effects on specific prefrontal circuits remain to be elucidated. Here, we identify a discrete GABAergic neuronal ensemble in the mouse medial orbitofrontal cortex (mOFC) that is selectively recruited in response to binge alcohol drinking and limits further drinking behavior. Optogenetic silencing of this population, or its ablation, results in uncontrolled binge alcohol consumption. This neuronal ensemble is specific to alcohol and is not recruited by other rewarding substances. Neurons in this ensemble project widely throughout the brain, but projections specifically to the mediodorsal thalamus regulate binge alcohol drinking. Together, these results identify a brain circuit in the mOFC that serves to protect against binge drinking by reducing alcohol intake, which may offer avenues for the development of mOFC neuronal ensemble-targeted interventions.</p>\",\"PeriodicalId\":19076,\"journal\":{\"name\":\"Nature neuroscience\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":21.2000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41593-025-01970-x\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41593-025-01970-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Suppression of binge alcohol drinking by an inhibitory neuronal ensemble in the mouse medial orbitofrontal cortex
Alcohol consumption remains a significant global health challenge, directly and indirectly causing millions of deaths annually. Alcohol abuse causes dysregulated activity of the prefrontal cortex, yet effects on specific prefrontal circuits remain to be elucidated. Here, we identify a discrete GABAergic neuronal ensemble in the mouse medial orbitofrontal cortex (mOFC) that is selectively recruited in response to binge alcohol drinking and limits further drinking behavior. Optogenetic silencing of this population, or its ablation, results in uncontrolled binge alcohol consumption. This neuronal ensemble is specific to alcohol and is not recruited by other rewarding substances. Neurons in this ensemble project widely throughout the brain, but projections specifically to the mediodorsal thalamus regulate binge alcohol drinking. Together, these results identify a brain circuit in the mOFC that serves to protect against binge drinking by reducing alcohol intake, which may offer avenues for the development of mOFC neuronal ensemble-targeted interventions.
期刊介绍:
Nature Neuroscience, a multidisciplinary journal, publishes papers of the utmost quality and significance across all realms of neuroscience. The editors welcome contributions spanning molecular, cellular, systems, and cognitive neuroscience, along with psychophysics, computational modeling, and nervous system disorders. While no area is off-limits, studies offering fundamental insights into nervous system function receive priority.
The journal offers high visibility to both readers and authors, fostering interdisciplinary communication and accessibility to a broad audience. It maintains high standards of copy editing and production, rigorous peer review, rapid publication, and operates independently from academic societies and other vested interests.
In addition to primary research, Nature Neuroscience features news and views, reviews, editorials, commentaries, perspectives, book reviews, and correspondence, aiming to serve as the voice of the global neuroscience community.