{"title":"一种响应mmp9的纳米酶水凝胶通过重建促炎和抗炎平衡来促进糖尿病伤口愈合。","authors":"Jinze Wang, Haiqi Zhang, Sentao Hu and Lie Ma","doi":"10.1039/D4TB02857K","DOIUrl":null,"url":null,"abstract":"<p >Excessive reactive oxygen species (ROS) lead to persistent inflammation in diabetic wounds inducing excessive inflammatory factors and matrix metalloproteinases (MMPs), thereby hindering wound healing. However, low concentration ROS also function as a signaling molecule for maintaining cell function and promoting vascularization. Therefore, it is important to regulate ROS levels adaptively to match the healing process. Here, a nanozyme hydrogel was developed to intelligently clear wound ROS in response to dynamic changes of matrix metalloproteinase-9 (MMP9). Specifically, Prussian blue nanoparticle (PBNP) loaded-gelatin nanospheres (PGs) were encapsulated in polyvinyl alcohol (PVA) hydrogel to obtain a nanozyme hydrogel (PGs@PVA). Hydrogen bonding between PGs and PVA not only improves the mechanical properties of the PGs@PVA hydrogel but also ensures the controlled release of PBNPs. With the release of PBNP from the PGs@PVA hydrogel in response to the high level of MMP9 in the pro-inflammatory stage, excessive ROS were cleared. The phenotype of the macrophages was regulated correspondingly. The <em>in vivo</em> results proved that the PGs@PVA hydrogel promoted healing speed, epithelialization, vascularization, and collagen deposition of diabetic wounds by adaptive immunomodulation. The MMP9-responsive nanozyme hydrogel shows great potential in diabetic wound healing by reconstructing the balance of pro-inflammation and anti-inflammation.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 27","pages":" 8083-8093"},"PeriodicalIF":6.1000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A MMP9-responsive nanozyme hydrogel to promote diabetic wound healing by reconstructing the balance of pro-inflammation and anti-inflammation†\",\"authors\":\"Jinze Wang, Haiqi Zhang, Sentao Hu and Lie Ma\",\"doi\":\"10.1039/D4TB02857K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Excessive reactive oxygen species (ROS) lead to persistent inflammation in diabetic wounds inducing excessive inflammatory factors and matrix metalloproteinases (MMPs), thereby hindering wound healing. However, low concentration ROS also function as a signaling molecule for maintaining cell function and promoting vascularization. Therefore, it is important to regulate ROS levels adaptively to match the healing process. Here, a nanozyme hydrogel was developed to intelligently clear wound ROS in response to dynamic changes of matrix metalloproteinase-9 (MMP9). Specifically, Prussian blue nanoparticle (PBNP) loaded-gelatin nanospheres (PGs) were encapsulated in polyvinyl alcohol (PVA) hydrogel to obtain a nanozyme hydrogel (PGs@PVA). Hydrogen bonding between PGs and PVA not only improves the mechanical properties of the PGs@PVA hydrogel but also ensures the controlled release of PBNPs. With the release of PBNP from the PGs@PVA hydrogel in response to the high level of MMP9 in the pro-inflammatory stage, excessive ROS were cleared. The phenotype of the macrophages was regulated correspondingly. The <em>in vivo</em> results proved that the PGs@PVA hydrogel promoted healing speed, epithelialization, vascularization, and collagen deposition of diabetic wounds by adaptive immunomodulation. The MMP9-responsive nanozyme hydrogel shows great potential in diabetic wound healing by reconstructing the balance of pro-inflammation and anti-inflammation.</p>\",\"PeriodicalId\":83,\"journal\":{\"name\":\"Journal of Materials Chemistry B\",\"volume\":\" 27\",\"pages\":\" 8083-8093\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d4tb02857k\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d4tb02857k","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
A MMP9-responsive nanozyme hydrogel to promote diabetic wound healing by reconstructing the balance of pro-inflammation and anti-inflammation†
Excessive reactive oxygen species (ROS) lead to persistent inflammation in diabetic wounds inducing excessive inflammatory factors and matrix metalloproteinases (MMPs), thereby hindering wound healing. However, low concentration ROS also function as a signaling molecule for maintaining cell function and promoting vascularization. Therefore, it is important to regulate ROS levels adaptively to match the healing process. Here, a nanozyme hydrogel was developed to intelligently clear wound ROS in response to dynamic changes of matrix metalloproteinase-9 (MMP9). Specifically, Prussian blue nanoparticle (PBNP) loaded-gelatin nanospheres (PGs) were encapsulated in polyvinyl alcohol (PVA) hydrogel to obtain a nanozyme hydrogel (PGs@PVA). Hydrogen bonding between PGs and PVA not only improves the mechanical properties of the PGs@PVA hydrogel but also ensures the controlled release of PBNPs. With the release of PBNP from the PGs@PVA hydrogel in response to the high level of MMP9 in the pro-inflammatory stage, excessive ROS were cleared. The phenotype of the macrophages was regulated correspondingly. The in vivo results proved that the PGs@PVA hydrogel promoted healing speed, epithelialization, vascularization, and collagen deposition of diabetic wounds by adaptive immunomodulation. The MMP9-responsive nanozyme hydrogel shows great potential in diabetic wound healing by reconstructing the balance of pro-inflammation and anti-inflammation.
期刊介绍:
Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive:
Antifouling coatings
Biocompatible materials
Bioelectronics
Bioimaging
Biomimetics
Biomineralisation
Bionics
Biosensors
Diagnostics
Drug delivery
Gene delivery
Immunobiology
Nanomedicine
Regenerative medicine & Tissue engineering
Scaffolds
Soft robotics
Stem cells
Therapeutic devices