历史塑造了两种鲍曼不动杆菌对替加环素的调节和进化反应。

IF 2.6 4区 生物学 Q3 MICROBIOLOGY
Alecia B Rokes, Alfonso Santos-Lopez, Vaughn S Cooper
{"title":"历史塑造了两种鲍曼不动杆菌对替加环素的调节和进化反应。","authors":"Alecia B Rokes, Alfonso Santos-Lopez, Vaughn S Cooper","doi":"10.1099/mic.0.001570","DOIUrl":null,"url":null,"abstract":"<p><p>Evolutionary history encompasses both genetic and phenotypic bacterial differences; however, the extent to which this history influences drug response and antimicrobial resistance (AMR) adaptation remains unclear. Historical contingencies arise when elements from an organism's past leave lasting effects on the genome, altering the paths available for adaptation. Here, we compare two diverging reference strains of <i>Acinetobacter baumannii</i>, representative of archaic and contemporary infections, to study the impact of deep historical differences shaped by decades of adaptation in varying antibiotic and host pressures. We evaluated these effects by comparing immediate and adaptive responses to the last-resort antibiotic, tigecycline (TGC). The strains demonstrated divergent transcriptional responses, suggesting that baseline transcript levels may dictate global responses to antibiotics. Experimental evolution in TGC revealed clear differences in population dynamics, with hard sweeps in populations founded by one strain and no mutations reaching fixation in the other strain. AMR was acquired through predictable mechanisms of increased efflux and drug target modification; however, efflux targets were dictated by strain background. Genetic adaptation may outweigh historic differences in transcriptional networks, as evolved populations no longer show transcriptomic signatures of drug response. Importantly, fitness-resistance trade-offs were only observed in lineages evolved from the archaic strain, while the contemporary reference isolate suffered no fitness defects. This suggests that decades of adaptation to antibiotics resulted in pre-existing compensatory mechanisms in the more contemporary isolate, an important example of a beneficial effect of historical contingencies.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":"171 6","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12149411/pdf/","citationCount":"0","resultStr":"{\"title\":\"History shapes regulatory and evolutionary responses to tigecycline in two reference strains of <i>Acinetobacter baumannii</i>.\",\"authors\":\"Alecia B Rokes, Alfonso Santos-Lopez, Vaughn S Cooper\",\"doi\":\"10.1099/mic.0.001570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Evolutionary history encompasses both genetic and phenotypic bacterial differences; however, the extent to which this history influences drug response and antimicrobial resistance (AMR) adaptation remains unclear. Historical contingencies arise when elements from an organism's past leave lasting effects on the genome, altering the paths available for adaptation. Here, we compare two diverging reference strains of <i>Acinetobacter baumannii</i>, representative of archaic and contemporary infections, to study the impact of deep historical differences shaped by decades of adaptation in varying antibiotic and host pressures. We evaluated these effects by comparing immediate and adaptive responses to the last-resort antibiotic, tigecycline (TGC). The strains demonstrated divergent transcriptional responses, suggesting that baseline transcript levels may dictate global responses to antibiotics. Experimental evolution in TGC revealed clear differences in population dynamics, with hard sweeps in populations founded by one strain and no mutations reaching fixation in the other strain. AMR was acquired through predictable mechanisms of increased efflux and drug target modification; however, efflux targets were dictated by strain background. Genetic adaptation may outweigh historic differences in transcriptional networks, as evolved populations no longer show transcriptomic signatures of drug response. Importantly, fitness-resistance trade-offs were only observed in lineages evolved from the archaic strain, while the contemporary reference isolate suffered no fitness defects. This suggests that decades of adaptation to antibiotics resulted in pre-existing compensatory mechanisms in the more contemporary isolate, an important example of a beneficial effect of historical contingencies.</p>\",\"PeriodicalId\":49819,\"journal\":{\"name\":\"Microbiology-Sgm\",\"volume\":\"171 6\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12149411/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiology-Sgm\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1099/mic.0.001570\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology-Sgm","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1099/mic.0.001570","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

进化历史包括遗传和表型细菌的差异;然而,这一历史对药物反应和抗菌素耐药性(AMR)适应的影响程度仍不清楚。当一个有机体过去的元素在基因组上留下持久的影响,改变了适应的路径时,历史偶然性就出现了。在这里,我们比较了两种不同的鲍曼不动杆菌参考菌株,它们是古代和当代感染的代表,以研究几十年来在不同抗生素和宿主压力下的适应所形成的深刻历史差异的影响。我们通过比较对最后一种抗生素替加环素(TGC)的即时和适应性反应来评估这些影响。这些菌株表现出不同的转录反应,表明基线转录水平可能决定了对抗生素的全球反应。TGC的实验进化揭示了种群动态的明显差异,在一个菌株建立的种群中存在硬扫,而在另一个菌株中没有突变达到固定。AMR是通过可预测的外排增加和药物靶标修饰机制获得的;然而,外排目标是由应变背景决定的。遗传适应可能超过转录网络的历史差异,因为进化的群体不再显示药物反应的转录组特征。重要的是,适应性-抗性权衡仅在从古老菌株进化而来的谱系中观察到,而当代参考分离株没有适应性缺陷。这表明,几十年来对抗生素的适应导致了更现代的孤立物中预先存在的补偿机制,这是历史偶然性有益影响的一个重要例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
History shapes regulatory and evolutionary responses to tigecycline in two reference strains of Acinetobacter baumannii.

Evolutionary history encompasses both genetic and phenotypic bacterial differences; however, the extent to which this history influences drug response and antimicrobial resistance (AMR) adaptation remains unclear. Historical contingencies arise when elements from an organism's past leave lasting effects on the genome, altering the paths available for adaptation. Here, we compare two diverging reference strains of Acinetobacter baumannii, representative of archaic and contemporary infections, to study the impact of deep historical differences shaped by decades of adaptation in varying antibiotic and host pressures. We evaluated these effects by comparing immediate and adaptive responses to the last-resort antibiotic, tigecycline (TGC). The strains demonstrated divergent transcriptional responses, suggesting that baseline transcript levels may dictate global responses to antibiotics. Experimental evolution in TGC revealed clear differences in population dynamics, with hard sweeps in populations founded by one strain and no mutations reaching fixation in the other strain. AMR was acquired through predictable mechanisms of increased efflux and drug target modification; however, efflux targets were dictated by strain background. Genetic adaptation may outweigh historic differences in transcriptional networks, as evolved populations no longer show transcriptomic signatures of drug response. Importantly, fitness-resistance trade-offs were only observed in lineages evolved from the archaic strain, while the contemporary reference isolate suffered no fitness defects. This suggests that decades of adaptation to antibiotics resulted in pre-existing compensatory mechanisms in the more contemporary isolate, an important example of a beneficial effect of historical contingencies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbiology-Sgm
Microbiology-Sgm 生物-微生物学
CiteScore
4.60
自引率
7.10%
发文量
132
审稿时长
3.0 months
期刊介绍: We publish high-quality original research on bacteria, fungi, protists, archaea, algae, parasites and other microscopic life forms. Topics include but are not limited to: Antimicrobials and antimicrobial resistance Bacteriology and parasitology Biochemistry and biophysics Biofilms and biological systems Biotechnology and bioremediation Cell biology and signalling Chemical biology Cross-disciplinary work Ecology and environmental microbiology Food microbiology Genetics Host–microbe interactions Microbial methods and techniques Microscopy and imaging Omics, including genomics, proteomics and metabolomics Physiology and metabolism Systems biology and synthetic biology The microbiome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信