{"title":"人血浆中达格列净的RP-HPLC生物分析方法的建立与验证。","authors":"Pravin Rangnath Dighe, Manoj Ramesh Kumbhare","doi":"10.62958/j.cjap.2025.009","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Dapagliflozin is used for controlling blood glucose levels in patients with type 2 diabetes. It is a sodium-glucose cotransporter 2 inhibitor, which enhances the elimination of blood glucose through the urine by inhibiting the protein involved in the transport mechanism of SGLT2. Dapagliflozin requires a selective and sensitive bioanalytical RP-HPLC method.</p><p><strong>Aim: </strong>Reverse phase - high performance liquid chromatography technique was used to develop and validate a bioanalytical method for the quantification of dapagliflozin (DAPA) in human plasma.</p><p><strong>Methods: </strong>The internal standard (IS) used was azilsartan medoxomil. In isocratic mode, the mobile phase consisted of 50:50 v/v acetonitrile and 0.1% orthophosphoric acid in water at a flow rate of 1.0 mL/min. The chromatogram was recorded at 224 nm. For the chromatographic separation, a Kromasil C18 column (250 mm × 4.6 mm; 5μ) was used. The drug was extracted from plasma samples by the protein precipitation method.</p><p><strong>Result and discussion: </strong>The chromatographic run time was 15 min. Dapagliflozin and IS eluted at 4.6 and 5.7 min, respectively. The method was selective and sensitive, with a limit of quantification of 1.50 µg/mL. The developed method was found to be linear in the range of 1.50-60 µg/mL (r2 = 0.9994). The accuracy and precision obtained from six sets of quality control (QC) samples ranged from 96.23% to 108.67% and 1.35% to 3.19%, respectively. The extraction recovery of dapagliflozin in three QC samples ranged from 87.39% to 90.78%. The bench-top stability, stock solution stability, stability of processed extracted samples at room temperature, and freeze-thaw stability evaluations showed no evidence of degradation of dapagliflozin.</p><p><strong>Conclusion: </strong>The stability, selectivity, sensitivity, and reproducibility of the developed method make it suitable for the determination of dapagliflozin in human plasma.</p>","PeriodicalId":23985,"journal":{"name":"Zhongguo ying yong sheng li xue za zhi = Zhongguo yingyong shenglixue zazhi = Chinese journal of applied physiology","volume":"41 ","pages":"e20250009"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioanalytical Method Development and Validation of Dapagliflozin in Human Plasma Using RP-HPLC Method.\",\"authors\":\"Pravin Rangnath Dighe, Manoj Ramesh Kumbhare\",\"doi\":\"10.62958/j.cjap.2025.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Dapagliflozin is used for controlling blood glucose levels in patients with type 2 diabetes. It is a sodium-glucose cotransporter 2 inhibitor, which enhances the elimination of blood glucose through the urine by inhibiting the protein involved in the transport mechanism of SGLT2. Dapagliflozin requires a selective and sensitive bioanalytical RP-HPLC method.</p><p><strong>Aim: </strong>Reverse phase - high performance liquid chromatography technique was used to develop and validate a bioanalytical method for the quantification of dapagliflozin (DAPA) in human plasma.</p><p><strong>Methods: </strong>The internal standard (IS) used was azilsartan medoxomil. In isocratic mode, the mobile phase consisted of 50:50 v/v acetonitrile and 0.1% orthophosphoric acid in water at a flow rate of 1.0 mL/min. The chromatogram was recorded at 224 nm. For the chromatographic separation, a Kromasil C18 column (250 mm × 4.6 mm; 5μ) was used. The drug was extracted from plasma samples by the protein precipitation method.</p><p><strong>Result and discussion: </strong>The chromatographic run time was 15 min. Dapagliflozin and IS eluted at 4.6 and 5.7 min, respectively. The method was selective and sensitive, with a limit of quantification of 1.50 µg/mL. The developed method was found to be linear in the range of 1.50-60 µg/mL (r2 = 0.9994). The accuracy and precision obtained from six sets of quality control (QC) samples ranged from 96.23% to 108.67% and 1.35% to 3.19%, respectively. The extraction recovery of dapagliflozin in three QC samples ranged from 87.39% to 90.78%. The bench-top stability, stock solution stability, stability of processed extracted samples at room temperature, and freeze-thaw stability evaluations showed no evidence of degradation of dapagliflozin.</p><p><strong>Conclusion: </strong>The stability, selectivity, sensitivity, and reproducibility of the developed method make it suitable for the determination of dapagliflozin in human plasma.</p>\",\"PeriodicalId\":23985,\"journal\":{\"name\":\"Zhongguo ying yong sheng li xue za zhi = Zhongguo yingyong shenglixue zazhi = Chinese journal of applied physiology\",\"volume\":\"41 \",\"pages\":\"e20250009\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zhongguo ying yong sheng li xue za zhi = Zhongguo yingyong shenglixue zazhi = Chinese journal of applied physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.62958/j.cjap.2025.009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zhongguo ying yong sheng li xue za zhi = Zhongguo yingyong shenglixue zazhi = Chinese journal of applied physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.62958/j.cjap.2025.009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
Bioanalytical Method Development and Validation of Dapagliflozin in Human Plasma Using RP-HPLC Method.
Background: Dapagliflozin is used for controlling blood glucose levels in patients with type 2 diabetes. It is a sodium-glucose cotransporter 2 inhibitor, which enhances the elimination of blood glucose through the urine by inhibiting the protein involved in the transport mechanism of SGLT2. Dapagliflozin requires a selective and sensitive bioanalytical RP-HPLC method.
Aim: Reverse phase - high performance liquid chromatography technique was used to develop and validate a bioanalytical method for the quantification of dapagliflozin (DAPA) in human plasma.
Methods: The internal standard (IS) used was azilsartan medoxomil. In isocratic mode, the mobile phase consisted of 50:50 v/v acetonitrile and 0.1% orthophosphoric acid in water at a flow rate of 1.0 mL/min. The chromatogram was recorded at 224 nm. For the chromatographic separation, a Kromasil C18 column (250 mm × 4.6 mm; 5μ) was used. The drug was extracted from plasma samples by the protein precipitation method.
Result and discussion: The chromatographic run time was 15 min. Dapagliflozin and IS eluted at 4.6 and 5.7 min, respectively. The method was selective and sensitive, with a limit of quantification of 1.50 µg/mL. The developed method was found to be linear in the range of 1.50-60 µg/mL (r2 = 0.9994). The accuracy and precision obtained from six sets of quality control (QC) samples ranged from 96.23% to 108.67% and 1.35% to 3.19%, respectively. The extraction recovery of dapagliflozin in three QC samples ranged from 87.39% to 90.78%. The bench-top stability, stock solution stability, stability of processed extracted samples at room temperature, and freeze-thaw stability evaluations showed no evidence of degradation of dapagliflozin.
Conclusion: The stability, selectivity, sensitivity, and reproducibility of the developed method make it suitable for the determination of dapagliflozin in human plasma.