Qin Yang , Xiujuan Qu , Can Sheng , Xing Zhao , Guanqun Chen , Xiaoni Wang , Yuxia Li , Wenying Du , Xiaoqi Wang , Yu Sun , Xiaobo Li , Haijing Niu , Ying Han
{"title":"经颅光生物调节改善健康老年人的脑功能网络和工作记忆:一项fNIRS研究。","authors":"Qin Yang , Xiujuan Qu , Can Sheng , Xing Zhao , Guanqun Chen , Xiaoni Wang , Yuxia Li , Wenying Du , Xiaoqi Wang , Yu Sun , Xiaobo Li , Haijing Niu , Ying Han","doi":"10.1016/j.neuroimage.2025.121305","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Transcranial photobiomodulation (tPBM), as a novel non-invasive neurostimulation technique, has shown the compelling potential for improving cognitive function in aging population. However, the potential mechanism remains unclear. Neuroimaging studies have found that tPBM-induced physiological changes exist in both targeted and non-targeted brain areas, suggesting the necessity of understanding the modulation mechanism from the perspective of the whole brain level.</div></div><div><h3>Objective</h3><div>This randomized, single-blind, sham-controlled crossover study aimed to investigate the hypothesis that tPBM improved working memory in healthy older adults through the mechanism of optimizing the properties of the resting-state functional brain networks.</div></div><div><h3>Methods</h3><div>A total of 55 right-handed healthy older adults were randomly assigned to sham tPBM session group or active tPBM session group. After a washout interval, they were assigned to the opposite intervention session. Each session included the following: active or sham tPBM application with a 1064-nm laser to the left forehead; before and after, resting-state functional near-infrared spectroscopy (fNIRS) measurements; and the digital n-back task. Differences in accuracy and reaction time of the n-back task, and changes in functional connectivity and graph metrics of the brain networks were investigated and compared between the active and sham tPBM sessions. In addition, correlations between tPBM-induced changes in functional brain networks, and the n-back task were examined.</div></div><div><h3>Results</h3><div>The results showed that compared with the sham tPBM session, the accuracy and reaction time during 3-back task significantly improved in the active tPBM session. In addition, the global efficiency, local efficiency, nodal efficiency, and functional connectivity significantly increased in the active tPBM session, particularly in the frontoparietal areas. Importantly, the altered 3-back accuracy was positively correlated with the changes of functional connectivity and nodal efficiency mainly in left prefrontal cortex in those who had increased 3-back accuracy in the active tPBM session.</div></div><div><h3>Conclusion</h3><div>This study suggests that tPBM may serve as an effective tool to improve working memory in older adults through the modulation of resting-state functional brain network properties. Investigations in large-scale samples are needed to further validate the findings of this study.</div></div>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":"316 ","pages":"Article 121305"},"PeriodicalIF":4.5000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transcranial photobiomodulation improves functional brain networks and working memory in healthy older adults: An fNIRS study\",\"authors\":\"Qin Yang , Xiujuan Qu , Can Sheng , Xing Zhao , Guanqun Chen , Xiaoni Wang , Yuxia Li , Wenying Du , Xiaoqi Wang , Yu Sun , Xiaobo Li , Haijing Niu , Ying Han\",\"doi\":\"10.1016/j.neuroimage.2025.121305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Transcranial photobiomodulation (tPBM), as a novel non-invasive neurostimulation technique, has shown the compelling potential for improving cognitive function in aging population. However, the potential mechanism remains unclear. Neuroimaging studies have found that tPBM-induced physiological changes exist in both targeted and non-targeted brain areas, suggesting the necessity of understanding the modulation mechanism from the perspective of the whole brain level.</div></div><div><h3>Objective</h3><div>This randomized, single-blind, sham-controlled crossover study aimed to investigate the hypothesis that tPBM improved working memory in healthy older adults through the mechanism of optimizing the properties of the resting-state functional brain networks.</div></div><div><h3>Methods</h3><div>A total of 55 right-handed healthy older adults were randomly assigned to sham tPBM session group or active tPBM session group. After a washout interval, they were assigned to the opposite intervention session. Each session included the following: active or sham tPBM application with a 1064-nm laser to the left forehead; before and after, resting-state functional near-infrared spectroscopy (fNIRS) measurements; and the digital n-back task. Differences in accuracy and reaction time of the n-back task, and changes in functional connectivity and graph metrics of the brain networks were investigated and compared between the active and sham tPBM sessions. In addition, correlations between tPBM-induced changes in functional brain networks, and the n-back task were examined.</div></div><div><h3>Results</h3><div>The results showed that compared with the sham tPBM session, the accuracy and reaction time during 3-back task significantly improved in the active tPBM session. In addition, the global efficiency, local efficiency, nodal efficiency, and functional connectivity significantly increased in the active tPBM session, particularly in the frontoparietal areas. Importantly, the altered 3-back accuracy was positively correlated with the changes of functional connectivity and nodal efficiency mainly in left prefrontal cortex in those who had increased 3-back accuracy in the active tPBM session.</div></div><div><h3>Conclusion</h3><div>This study suggests that tPBM may serve as an effective tool to improve working memory in older adults through the modulation of resting-state functional brain network properties. Investigations in large-scale samples are needed to further validate the findings of this study.</div></div>\",\"PeriodicalId\":19299,\"journal\":{\"name\":\"NeuroImage\",\"volume\":\"316 \",\"pages\":\"Article 121305\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NeuroImage\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1053811925003088\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1053811925003088","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
Transcranial photobiomodulation improves functional brain networks and working memory in healthy older adults: An fNIRS study
Background
Transcranial photobiomodulation (tPBM), as a novel non-invasive neurostimulation technique, has shown the compelling potential for improving cognitive function in aging population. However, the potential mechanism remains unclear. Neuroimaging studies have found that tPBM-induced physiological changes exist in both targeted and non-targeted brain areas, suggesting the necessity of understanding the modulation mechanism from the perspective of the whole brain level.
Objective
This randomized, single-blind, sham-controlled crossover study aimed to investigate the hypothesis that tPBM improved working memory in healthy older adults through the mechanism of optimizing the properties of the resting-state functional brain networks.
Methods
A total of 55 right-handed healthy older adults were randomly assigned to sham tPBM session group or active tPBM session group. After a washout interval, they were assigned to the opposite intervention session. Each session included the following: active or sham tPBM application with a 1064-nm laser to the left forehead; before and after, resting-state functional near-infrared spectroscopy (fNIRS) measurements; and the digital n-back task. Differences in accuracy and reaction time of the n-back task, and changes in functional connectivity and graph metrics of the brain networks were investigated and compared between the active and sham tPBM sessions. In addition, correlations between tPBM-induced changes in functional brain networks, and the n-back task were examined.
Results
The results showed that compared with the sham tPBM session, the accuracy and reaction time during 3-back task significantly improved in the active tPBM session. In addition, the global efficiency, local efficiency, nodal efficiency, and functional connectivity significantly increased in the active tPBM session, particularly in the frontoparietal areas. Importantly, the altered 3-back accuracy was positively correlated with the changes of functional connectivity and nodal efficiency mainly in left prefrontal cortex in those who had increased 3-back accuracy in the active tPBM session.
Conclusion
This study suggests that tPBM may serve as an effective tool to improve working memory in older adults through the modulation of resting-state functional brain network properties. Investigations in large-scale samples are needed to further validate the findings of this study.
期刊介绍:
NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.