绘制大脑功能连接的基准方法。

IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Nature Methods Pub Date : 2025-07-01 Epub Date: 2025-06-06 DOI:10.1038/s41592-025-02704-4
Zhen-Qi Liu, Andrea I Luppi, Justine Y Hansen, Ye Ella Tian, Andrew Zalesky, B T Thomas Yeo, Ben D Fulcher, Bratislav Misic
{"title":"绘制大脑功能连接的基准方法。","authors":"Zhen-Qi Liu, Andrea I Luppi, Justine Y Hansen, Ye Ella Tian, Andrew Zalesky, B T Thomas Yeo, Ben D Fulcher, Bratislav Misic","doi":"10.1038/s41592-025-02704-4","DOIUrl":null,"url":null,"abstract":"<p><p>The networked architecture of the brain promotes synchrony among neuronal populations. These communication patterns can be mapped using functional imaging, yielding functional connectivity (FC) networks. While most studies use Pearson's correlations by default, numerous pairwise interaction statistics exist in the scientific literature. How does the organization of the FC matrix vary with the choice of pairwise statistic? Here we use a library of 239 pairwise statistics to benchmark canonical features of FC networks, including hub mapping, weight-distance trade-offs, structure-function coupling, correspondence with other neurophysiological networks, individual fingerprinting and brain-behavior prediction. We find substantial quantitative and qualitative variation across FC methods. Measures such as covariance, precision and distance display multiple desirable properties, including correspondence with structural connectivity and the capacity to differentiate individuals and predict individual differences in behavior. Our report highlights how FC mapping can be optimized by tailoring pairwise statistics to specific neurophysiological mechanisms and research questions.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":"1593-1602"},"PeriodicalIF":36.1000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12240839/pdf/","citationCount":"0","resultStr":"{\"title\":\"Benchmarking methods for mapping functional connectivity in the brain.\",\"authors\":\"Zhen-Qi Liu, Andrea I Luppi, Justine Y Hansen, Ye Ella Tian, Andrew Zalesky, B T Thomas Yeo, Ben D Fulcher, Bratislav Misic\",\"doi\":\"10.1038/s41592-025-02704-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The networked architecture of the brain promotes synchrony among neuronal populations. These communication patterns can be mapped using functional imaging, yielding functional connectivity (FC) networks. While most studies use Pearson's correlations by default, numerous pairwise interaction statistics exist in the scientific literature. How does the organization of the FC matrix vary with the choice of pairwise statistic? Here we use a library of 239 pairwise statistics to benchmark canonical features of FC networks, including hub mapping, weight-distance trade-offs, structure-function coupling, correspondence with other neurophysiological networks, individual fingerprinting and brain-behavior prediction. We find substantial quantitative and qualitative variation across FC methods. Measures such as covariance, precision and distance display multiple desirable properties, including correspondence with structural connectivity and the capacity to differentiate individuals and predict individual differences in behavior. Our report highlights how FC mapping can be optimized by tailoring pairwise statistics to specific neurophysiological mechanisms and research questions.</p>\",\"PeriodicalId\":18981,\"journal\":{\"name\":\"Nature Methods\",\"volume\":\" \",\"pages\":\"1593-1602\"},\"PeriodicalIF\":36.1000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12240839/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41592-025-02704-4\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41592-025-02704-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

大脑的网络结构促进了神经元群之间的同步。这些通信模式可以使用功能成像进行映射,从而产生功能连接(FC)网络。虽然大多数研究默认使用皮尔逊相关性,但科学文献中存在许多成对相互作用统计。FC矩阵的组织如何随两两统计量的选择而变化?在这里,我们使用239个成对统计库对FC网络的典型特征进行基准测试,包括枢纽映射、权重-距离权衡、结构-功能耦合、与其他神经生理网络的对应关系、个体指纹和大脑行为预测。我们发现在FC方法中存在大量的定量和定性差异。协方差、精度和距离等测量显示了多种理想的特性,包括与结构连通性的对应关系以及区分个体和预测个体行为差异的能力。我们的报告强调了如何通过对特定神经生理机制和研究问题进行成对统计来优化FC映射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Benchmarking methods for mapping functional connectivity in the brain.

The networked architecture of the brain promotes synchrony among neuronal populations. These communication patterns can be mapped using functional imaging, yielding functional connectivity (FC) networks. While most studies use Pearson's correlations by default, numerous pairwise interaction statistics exist in the scientific literature. How does the organization of the FC matrix vary with the choice of pairwise statistic? Here we use a library of 239 pairwise statistics to benchmark canonical features of FC networks, including hub mapping, weight-distance trade-offs, structure-function coupling, correspondence with other neurophysiological networks, individual fingerprinting and brain-behavior prediction. We find substantial quantitative and qualitative variation across FC methods. Measures such as covariance, precision and distance display multiple desirable properties, including correspondence with structural connectivity and the capacity to differentiate individuals and predict individual differences in behavior. Our report highlights how FC mapping can be optimized by tailoring pairwise statistics to specific neurophysiological mechanisms and research questions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Methods
Nature Methods 生物-生化研究方法
CiteScore
58.70
自引率
1.70%
发文量
326
审稿时长
1 months
期刊介绍: Nature Methods is a monthly journal that focuses on publishing innovative methods and substantial enhancements to fundamental life sciences research techniques. Geared towards a diverse, interdisciplinary readership of researchers in academia and industry engaged in laboratory work, the journal offers new tools for research and emphasizes the immediate practical significance of the featured work. It publishes primary research papers and reviews recent technical and methodological advancements, with a particular interest in primary methods papers relevant to the biological and biomedical sciences. This includes methods rooted in chemistry with practical applications for studying biological problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信