Yapeng Zhang , Chenwen Liu , Wenqiang Li , Zhidong Ma , Bo Lv , Lei Qin , Chun Li
{"title":"对酿酒酵母甾醇合成途径进行系统工程改造,促进了β-石竹烯的高效生产。","authors":"Yapeng Zhang , Chenwen Liu , Wenqiang Li , Zhidong Ma , Bo Lv , Lei Qin , Chun Li","doi":"10.1016/j.ymben.2025.06.004","DOIUrl":null,"url":null,"abstract":"<div><div>β-caryophyllene, a plant-derived sesquiterpene, serves as a food flavoring, anti-inflammatory agent, antioxidant, and high-energy fuel source. Extraction of β-caryophyllene from plants is a costly and inefficient process. Therefore, microbial cell factories have been employed for the production of β-caryophyllene. However, the limited yield is insufficient for its industrial application. In this study, we balanced the utilization of cellular resources for growth and production by systematically regulating the sterol synthesis pathway to maximize the synthesis of β-caryophyllene. In the competitive pathways concerning sterol and fatty acid synthesis, genes expression was suppressed by substituting the original promoters with a glucose-sensing promoter P<sub><em>HXT1</em></sub> and a sterol synthesis promoter P<sub><em>ERG7</em></sub>, respectively. This approach effectively increased the production of β-caryophyllene by 6.8 times, reaching 854.7 mg/L. Engineering glucose-sensing pathway altered the strength of P<sub><em>HXT1</em></sub>, resulting in an increase in β-caryophyllene production to 1.25 g/L. The cell growth and β-caryophyllene production were further boosted through diploid fusion, resulting in 21.4 g/L β-caryophyllene in fed-batch fermentation. This represents the highest reported production of β-caryophyllene to date. This study provides a valuable reference for the production of sesquiterpenes in microbial cell factories.</div></div>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":"91 ","pages":"Pages 347-355"},"PeriodicalIF":6.8000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Systematic engineering of the sterol synthesis pathway for Saccharomyces cerevisiae promotes the efficient production of β-caryophyllene\",\"authors\":\"Yapeng Zhang , Chenwen Liu , Wenqiang Li , Zhidong Ma , Bo Lv , Lei Qin , Chun Li\",\"doi\":\"10.1016/j.ymben.2025.06.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>β-caryophyllene, a plant-derived sesquiterpene, serves as a food flavoring, anti-inflammatory agent, antioxidant, and high-energy fuel source. Extraction of β-caryophyllene from plants is a costly and inefficient process. Therefore, microbial cell factories have been employed for the production of β-caryophyllene. However, the limited yield is insufficient for its industrial application. In this study, we balanced the utilization of cellular resources for growth and production by systematically regulating the sterol synthesis pathway to maximize the synthesis of β-caryophyllene. In the competitive pathways concerning sterol and fatty acid synthesis, genes expression was suppressed by substituting the original promoters with a glucose-sensing promoter P<sub><em>HXT1</em></sub> and a sterol synthesis promoter P<sub><em>ERG7</em></sub>, respectively. This approach effectively increased the production of β-caryophyllene by 6.8 times, reaching 854.7 mg/L. Engineering glucose-sensing pathway altered the strength of P<sub><em>HXT1</em></sub>, resulting in an increase in β-caryophyllene production to 1.25 g/L. The cell growth and β-caryophyllene production were further boosted through diploid fusion, resulting in 21.4 g/L β-caryophyllene in fed-batch fermentation. This represents the highest reported production of β-caryophyllene to date. This study provides a valuable reference for the production of sesquiterpenes in microbial cell factories.</div></div>\",\"PeriodicalId\":18483,\"journal\":{\"name\":\"Metabolic engineering\",\"volume\":\"91 \",\"pages\":\"Pages 347-355\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolic engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1096717625000904\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1096717625000904","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Systematic engineering of the sterol synthesis pathway for Saccharomyces cerevisiae promotes the efficient production of β-caryophyllene
β-caryophyllene, a plant-derived sesquiterpene, serves as a food flavoring, anti-inflammatory agent, antioxidant, and high-energy fuel source. Extraction of β-caryophyllene from plants is a costly and inefficient process. Therefore, microbial cell factories have been employed for the production of β-caryophyllene. However, the limited yield is insufficient for its industrial application. In this study, we balanced the utilization of cellular resources for growth and production by systematically regulating the sterol synthesis pathway to maximize the synthesis of β-caryophyllene. In the competitive pathways concerning sterol and fatty acid synthesis, genes expression was suppressed by substituting the original promoters with a glucose-sensing promoter PHXT1 and a sterol synthesis promoter PERG7, respectively. This approach effectively increased the production of β-caryophyllene by 6.8 times, reaching 854.7 mg/L. Engineering glucose-sensing pathway altered the strength of PHXT1, resulting in an increase in β-caryophyllene production to 1.25 g/L. The cell growth and β-caryophyllene production were further boosted through diploid fusion, resulting in 21.4 g/L β-caryophyllene in fed-batch fermentation. This represents the highest reported production of β-caryophyllene to date. This study provides a valuable reference for the production of sesquiterpenes in microbial cell factories.
期刊介绍:
Metabolic Engineering (MBE) is a journal that focuses on publishing original research papers on the directed modulation of metabolic pathways for metabolite overproduction or the enhancement of cellular properties. It welcomes papers that describe the engineering of native pathways and the synthesis of heterologous pathways to convert microorganisms into microbial cell factories. The journal covers experimental, computational, and modeling approaches for understanding metabolic pathways and manipulating them through genetic, media, or environmental means. Effective exploration of metabolic pathways necessitates the use of molecular biology and biochemistry methods, as well as engineering techniques for modeling and data analysis. MBE serves as a platform for interdisciplinary research in fields such as biochemistry, molecular biology, applied microbiology, cellular physiology, cellular nutrition in health and disease, and biochemical engineering. The journal publishes various types of papers, including original research papers and review papers. It is indexed and abstracted in databases such as Scopus, Embase, EMBiology, Current Contents - Life Sciences and Clinical Medicine, Science Citation Index, PubMed/Medline, CAS and Biotechnology Citation Index.