{"title":"长形GlcAT-P的细胞质n端尾部的三个谷氨酸残基定义了高尔基到内质网的运输。","authors":"Ayaka Okada, Risa Harui, Tomonari Ishida, Katsuaki Higashi, Motohiro Nonaka, Shogo Oka, Jyoji Morise","doi":"10.1093/jb/mvaf030","DOIUrl":null,"url":null,"abstract":"<p><p>Glucuronyltransferase GlcAT-P is a rate-limiting enzyme involved in the biosynthesis of the Human Natural Killer-1 carbohydrate and is essential for acquiring higher brain functions. Alternative splicing produces two isoforms, short-form GlcAT-P (sGlcAT-P) and long-form GlcAT-P (lGlcAT-P), which share identical peptide sequences except for an additional 13 amino acids (AA) in the cytoplasmic N-terminal tail of lGlcAT-P. Although sGlcAT-P localizes to the Golgi apparatus (GA), where many glycosyltransferases reside, lGlcAT-P is distributed in both the GA and endoplasmic reticulum (ER). However, the mechanisms responsible for this distinct intracellular distribution remain poorly understood. In this study, we explored the role of the 13 AA in the cytoplasmic N-tail of lGlcAT-P in trafficking between the GA and the ER using the Retention Using Selective Hooks system. Our findings revealed that lGlcAT-P undergoes enhanced retrograde trafficking from the GA to the ER, whereas its anterograde trafficking from the ER to the GA remains largely unaffected. In addition, three glutamic acid residues within the 13 AA of lGlcAT-P were identified as crucial for promoting retrograde trafficking. These results suggest that the ER distribution of lGlcAT-P is primarily governed by Golgi-to-ER trafficking regulated by specific sequences in its cytoplasmic N-tail.</p>","PeriodicalId":15234,"journal":{"name":"Journal of biochemistry","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three glutamic acid residues in the cytoplasmic N-terminal tail of long-form GlcAT-P define Golgi-to-ER trafficking.\",\"authors\":\"Ayaka Okada, Risa Harui, Tomonari Ishida, Katsuaki Higashi, Motohiro Nonaka, Shogo Oka, Jyoji Morise\",\"doi\":\"10.1093/jb/mvaf030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glucuronyltransferase GlcAT-P is a rate-limiting enzyme involved in the biosynthesis of the Human Natural Killer-1 carbohydrate and is essential for acquiring higher brain functions. Alternative splicing produces two isoforms, short-form GlcAT-P (sGlcAT-P) and long-form GlcAT-P (lGlcAT-P), which share identical peptide sequences except for an additional 13 amino acids (AA) in the cytoplasmic N-terminal tail of lGlcAT-P. Although sGlcAT-P localizes to the Golgi apparatus (GA), where many glycosyltransferases reside, lGlcAT-P is distributed in both the GA and endoplasmic reticulum (ER). However, the mechanisms responsible for this distinct intracellular distribution remain poorly understood. In this study, we explored the role of the 13 AA in the cytoplasmic N-tail of lGlcAT-P in trafficking between the GA and the ER using the Retention Using Selective Hooks system. Our findings revealed that lGlcAT-P undergoes enhanced retrograde trafficking from the GA to the ER, whereas its anterograde trafficking from the ER to the GA remains largely unaffected. In addition, three glutamic acid residues within the 13 AA of lGlcAT-P were identified as crucial for promoting retrograde trafficking. These results suggest that the ER distribution of lGlcAT-P is primarily governed by Golgi-to-ER trafficking regulated by specific sequences in its cytoplasmic N-tail.</p>\",\"PeriodicalId\":15234,\"journal\":{\"name\":\"Journal of biochemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jb/mvaf030\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jb/mvaf030","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Three glutamic acid residues in the cytoplasmic N-terminal tail of long-form GlcAT-P define Golgi-to-ER trafficking.
Glucuronyltransferase GlcAT-P is a rate-limiting enzyme involved in the biosynthesis of the Human Natural Killer-1 carbohydrate and is essential for acquiring higher brain functions. Alternative splicing produces two isoforms, short-form GlcAT-P (sGlcAT-P) and long-form GlcAT-P (lGlcAT-P), which share identical peptide sequences except for an additional 13 amino acids (AA) in the cytoplasmic N-terminal tail of lGlcAT-P. Although sGlcAT-P localizes to the Golgi apparatus (GA), where many glycosyltransferases reside, lGlcAT-P is distributed in both the GA and endoplasmic reticulum (ER). However, the mechanisms responsible for this distinct intracellular distribution remain poorly understood. In this study, we explored the role of the 13 AA in the cytoplasmic N-tail of lGlcAT-P in trafficking between the GA and the ER using the Retention Using Selective Hooks system. Our findings revealed that lGlcAT-P undergoes enhanced retrograde trafficking from the GA to the ER, whereas its anterograde trafficking from the ER to the GA remains largely unaffected. In addition, three glutamic acid residues within the 13 AA of lGlcAT-P were identified as crucial for promoting retrograde trafficking. These results suggest that the ER distribution of lGlcAT-P is primarily governed by Golgi-to-ER trafficking regulated by specific sequences in its cytoplasmic N-tail.
期刊介绍:
The Journal of Biochemistry founded in 1922 publishes the results of original research in the fields of Biochemistry, Molecular Biology, Cell, and Biotechnology written in English in the form of Regular Papers or Rapid Communications. A Rapid Communication is not a preliminary note, but it is, though brief, a complete and final publication. The materials described in Rapid Communications should not be included in a later paper. The Journal also publishes short reviews (JB Review) and papers solicited by the Editorial Board.