Katrin Schmidt, Barbara Niehoff, Astrid Cornils, Wilhelm Hagen, Hauke Flores, Céline Heuzé, Nahid Welteke, Nadine Knϋppel, Sabrina Dorschner, Matthias Woll, Katie Jones, Giuliano Laudone, Robert G Campbell, Carin J Ashjian, Cecilia E Gelfman, Katyanne M Shoemaker, Rebecca Jenkins, Kristina Øie Kvile, Benoit Lebreton, Gaël Guillou, Clara J M Hoppe, Serdar Sakinan, Fokje L Schaafsma, Nicole Hildebrandt, Giulia Castellani, Simon T Belt, Allison A Fong, Angus Atkinson, Martin Graeve
{"title":"大型极地桡足类的季节性垂直迁移被重新解释为整个水柱的扩散机制。","authors":"Katrin Schmidt, Barbara Niehoff, Astrid Cornils, Wilhelm Hagen, Hauke Flores, Céline Heuzé, Nahid Welteke, Nadine Knϋppel, Sabrina Dorschner, Matthias Woll, Katie Jones, Giuliano Laudone, Robert G Campbell, Carin J Ashjian, Cecilia E Gelfman, Katyanne M Shoemaker, Rebecca Jenkins, Kristina Øie Kvile, Benoit Lebreton, Gaël Guillou, Clara J M Hoppe, Serdar Sakinan, Fokje L Schaafsma, Nicole Hildebrandt, Giulia Castellani, Simon T Belt, Allison A Fong, Angus Atkinson, Martin Graeve","doi":"10.1038/s43247-025-02389-9","DOIUrl":null,"url":null,"abstract":"<p><p>Seasonal vertical migration of large lipid-rich copepods is often described as a mass descent of animals when primary production ceases, with important implications for mesopelagic food webs and global carbon sequestration. This view ignores the existence of surface-resident individuals, but here we show that non-migrants can form a substantial part of the populations of polar migrant species. In the Central Arctic Ocean, the biomass-dominant <i>Calanus hyperboreus</i> was evenly distributed throughout the water column from November 2019 to March 2020, with ~20% of subadults and adult females remaining in the upper 200 m and ~41% migrating to 1000-2000 m. These vertical positions aligned with differences in the copepods' cholesterol content, which can enhance the tissue density at higher temperatures. Gonad development and the vertical distribution of their offspring indicate that both non-migrant and migrant females contribute to the population recruitment. We reinterpret copepod seasonal migration as a bet-hedging strategy that balances nutritional benefits near the surface with survival benefits at depth, and thereby contributes to the species' resilience under climatic change.</p>","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":"6 1","pages":"431"},"PeriodicalIF":8.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12137130/pdf/","citationCount":"0","resultStr":"{\"title\":\"Seasonal vertical migration of large polar copepods reinterpreted as a dispersal mechanism throughout the water column.\",\"authors\":\"Katrin Schmidt, Barbara Niehoff, Astrid Cornils, Wilhelm Hagen, Hauke Flores, Céline Heuzé, Nahid Welteke, Nadine Knϋppel, Sabrina Dorschner, Matthias Woll, Katie Jones, Giuliano Laudone, Robert G Campbell, Carin J Ashjian, Cecilia E Gelfman, Katyanne M Shoemaker, Rebecca Jenkins, Kristina Øie Kvile, Benoit Lebreton, Gaël Guillou, Clara J M Hoppe, Serdar Sakinan, Fokje L Schaafsma, Nicole Hildebrandt, Giulia Castellani, Simon T Belt, Allison A Fong, Angus Atkinson, Martin Graeve\",\"doi\":\"10.1038/s43247-025-02389-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Seasonal vertical migration of large lipid-rich copepods is often described as a mass descent of animals when primary production ceases, with important implications for mesopelagic food webs and global carbon sequestration. This view ignores the existence of surface-resident individuals, but here we show that non-migrants can form a substantial part of the populations of polar migrant species. In the Central Arctic Ocean, the biomass-dominant <i>Calanus hyperboreus</i> was evenly distributed throughout the water column from November 2019 to March 2020, with ~20% of subadults and adult females remaining in the upper 200 m and ~41% migrating to 1000-2000 m. These vertical positions aligned with differences in the copepods' cholesterol content, which can enhance the tissue density at higher temperatures. Gonad development and the vertical distribution of their offspring indicate that both non-migrant and migrant females contribute to the population recruitment. We reinterpret copepod seasonal migration as a bet-hedging strategy that balances nutritional benefits near the surface with survival benefits at depth, and thereby contributes to the species' resilience under climatic change.</p>\",\"PeriodicalId\":10530,\"journal\":{\"name\":\"Communications Earth & Environment\",\"volume\":\"6 1\",\"pages\":\"431\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12137130/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Earth & Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1038/s43247-025-02389-9\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Earth & Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1038/s43247-025-02389-9","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Seasonal vertical migration of large polar copepods reinterpreted as a dispersal mechanism throughout the water column.
Seasonal vertical migration of large lipid-rich copepods is often described as a mass descent of animals when primary production ceases, with important implications for mesopelagic food webs and global carbon sequestration. This view ignores the existence of surface-resident individuals, but here we show that non-migrants can form a substantial part of the populations of polar migrant species. In the Central Arctic Ocean, the biomass-dominant Calanus hyperboreus was evenly distributed throughout the water column from November 2019 to March 2020, with ~20% of subadults and adult females remaining in the upper 200 m and ~41% migrating to 1000-2000 m. These vertical positions aligned with differences in the copepods' cholesterol content, which can enhance the tissue density at higher temperatures. Gonad development and the vertical distribution of their offspring indicate that both non-migrant and migrant females contribute to the population recruitment. We reinterpret copepod seasonal migration as a bet-hedging strategy that balances nutritional benefits near the surface with survival benefits at depth, and thereby contributes to the species' resilience under climatic change.
期刊介绍:
Communications Earth & Environment is an open access journal from Nature Portfolio publishing high-quality research, reviews and commentary in all areas of the Earth, environmental and planetary sciences. Research papers published by the journal represent significant advances that bring new insight to a specialized area in Earth science, planetary science or environmental science.
Communications Earth & Environment has a 2-year impact factor of 7.9 (2022 Journal Citation Reports®). Articles published in the journal in 2022 were downloaded 1,412,858 times. Median time from submission to the first editorial decision is 8 days.