形状驱动的可解释人工智能与模拟退火优化癫痫检测使用多通道脑电图信号。

IF 3.9 3区 工程技术 Q2 NEUROSCIENCES
Cognitive Neurodynamics Pub Date : 2025-12-01 Epub Date: 2025-06-05 DOI:10.1007/s11571-025-10269-3
Indu Dokare, Sudha Gupta
{"title":"形状驱动的可解释人工智能与模拟退火优化癫痫检测使用多通道脑电图信号。","authors":"Indu Dokare, Sudha Gupta","doi":"10.1007/s11571-025-10269-3","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this research is to combine Explainable AI (XAI) with advanced optimization techniques to provide a unique framework for seizure detection. This proposed work investigates how to enhance patient-specific and patient-non-specific seizure detection models by combining multiband feature extraction, SHAP-based feature selection, SMOTE, and a metaheuristic algorithm for hyperparameter tuning.The discrete wavelet transform (DWT) is used to decompose EEG signals to retrieve entropy-based and statistical information. Simulated Annealing (SA) is employed to optimize the Random Forest (RF) classifier's hyperparameters, and SHAP (SHapley Additive exPlanations) values are utilized for feature selection. Furthermore, a novel technique SHAP-RELFR has been demonstrated to select patient-non-specific features. Additionally, SMOTE is employed to handle imbalanced data. The proposed methodology is evaluated on the CHB-MIT and Siena datasets using both patient-specific and patient-non-specific feature selection approaches. Experimental findings demonstrate that the proposed methodology significantly improves the performance of seizure detection. The average accuracy, precision, sensitivity, specificity, F1-score, and AUC obtained for a patient-non-specific case are 96.58%, 95.19%, 94.52%, 98.02%, 94.72%, and 0.9452, respectively, using the CHB-MIT dataset. For the Seina dataset, the average accuracy, precision, sensitivity, specificity, F1-score, and AUC obtained for a patient-non-specific case are 94.81%, 94.51%, 94.04%, 96.87%, 94.28%, and 0.9400, respectively. Explainable AI combined with SMOTE and a metaheuristic optimization algorithm facilitates an enhanced seizure detection. The novel SHAP-RELFR method provides an effective patient-non-specific feature selection, enabling this approach to be applicable across diverse patients. This proposed framework offers a step toward enhancing clinical decision-making by providing interpretable and versatile seizure detection models.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"85"},"PeriodicalIF":3.9000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12141179/pdf/","citationCount":"0","resultStr":"{\"title\":\"Shap-driven explainable AI with simulated annealing for optimized seizure detection using multichannel EEG signal.\",\"authors\":\"Indu Dokare, Sudha Gupta\",\"doi\":\"10.1007/s11571-025-10269-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The aim of this research is to combine Explainable AI (XAI) with advanced optimization techniques to provide a unique framework for seizure detection. This proposed work investigates how to enhance patient-specific and patient-non-specific seizure detection models by combining multiband feature extraction, SHAP-based feature selection, SMOTE, and a metaheuristic algorithm for hyperparameter tuning.The discrete wavelet transform (DWT) is used to decompose EEG signals to retrieve entropy-based and statistical information. Simulated Annealing (SA) is employed to optimize the Random Forest (RF) classifier's hyperparameters, and SHAP (SHapley Additive exPlanations) values are utilized for feature selection. Furthermore, a novel technique SHAP-RELFR has been demonstrated to select patient-non-specific features. Additionally, SMOTE is employed to handle imbalanced data. The proposed methodology is evaluated on the CHB-MIT and Siena datasets using both patient-specific and patient-non-specific feature selection approaches. Experimental findings demonstrate that the proposed methodology significantly improves the performance of seizure detection. The average accuracy, precision, sensitivity, specificity, F1-score, and AUC obtained for a patient-non-specific case are 96.58%, 95.19%, 94.52%, 98.02%, 94.72%, and 0.9452, respectively, using the CHB-MIT dataset. For the Seina dataset, the average accuracy, precision, sensitivity, specificity, F1-score, and AUC obtained for a patient-non-specific case are 94.81%, 94.51%, 94.04%, 96.87%, 94.28%, and 0.9400, respectively. Explainable AI combined with SMOTE and a metaheuristic optimization algorithm facilitates an enhanced seizure detection. The novel SHAP-RELFR method provides an effective patient-non-specific feature selection, enabling this approach to be applicable across diverse patients. This proposed framework offers a step toward enhancing clinical decision-making by providing interpretable and versatile seizure detection models.</p>\",\"PeriodicalId\":10500,\"journal\":{\"name\":\"Cognitive Neurodynamics\",\"volume\":\"19 1\",\"pages\":\"85\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12141179/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Neurodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11571-025-10269-3\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-025-10269-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是将可解释的人工智能(XAI)与先进的优化技术相结合,为癫痫检测提供独特的框架。本文研究了如何通过结合多波段特征提取、基于shap的特征选择、SMOTE和超参数调优的元启发式算法来增强患者特异性和非患者特异性癫痫检测模型。采用离散小波变换(DWT)对脑电信号进行分解,提取基于熵的统计信息。采用模拟退火(SA)优化随机森林(RF)分类器的超参数,并利用SHapley Additive explanation值进行特征选择。此外,一种新的技术SHAP-RELFR已被证明可以选择患者的非特异性特征。此外,SMOTE还用于处理不平衡数据。采用患者特异性和非患者特异性特征选择方法对CHB-MIT和Siena数据集进行了评估。实验结果表明,该方法显著提高了癫痫发作检测的性能。使用CHB-MIT数据集获得的患者-非特异性病例的平均准确度、精密度、灵敏度、特异性、f1评分和AUC分别为96.58%、95.19%、94.52%、98.02%、94.72%和0.9452。Seina数据集对患者非特异性病例的平均准确度、精密度、灵敏度、特异性、f1评分和AUC分别为94.81%、94.51%、94.04%、96.87%、94.28%和0.9400。可解释的人工智能与SMOTE和元启发式优化算法相结合,有助于增强癫痫检测。新颖的SHAP-RELFR方法提供了一种有效的患者非特异性特征选择,使该方法适用于不同的患者。这个提出的框架通过提供可解释和通用的癫痫检测模型,为加强临床决策提供了一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shap-driven explainable AI with simulated annealing for optimized seizure detection using multichannel EEG signal.

The aim of this research is to combine Explainable AI (XAI) with advanced optimization techniques to provide a unique framework for seizure detection. This proposed work investigates how to enhance patient-specific and patient-non-specific seizure detection models by combining multiband feature extraction, SHAP-based feature selection, SMOTE, and a metaheuristic algorithm for hyperparameter tuning.The discrete wavelet transform (DWT) is used to decompose EEG signals to retrieve entropy-based and statistical information. Simulated Annealing (SA) is employed to optimize the Random Forest (RF) classifier's hyperparameters, and SHAP (SHapley Additive exPlanations) values are utilized for feature selection. Furthermore, a novel technique SHAP-RELFR has been demonstrated to select patient-non-specific features. Additionally, SMOTE is employed to handle imbalanced data. The proposed methodology is evaluated on the CHB-MIT and Siena datasets using both patient-specific and patient-non-specific feature selection approaches. Experimental findings demonstrate that the proposed methodology significantly improves the performance of seizure detection. The average accuracy, precision, sensitivity, specificity, F1-score, and AUC obtained for a patient-non-specific case are 96.58%, 95.19%, 94.52%, 98.02%, 94.72%, and 0.9452, respectively, using the CHB-MIT dataset. For the Seina dataset, the average accuracy, precision, sensitivity, specificity, F1-score, and AUC obtained for a patient-non-specific case are 94.81%, 94.51%, 94.04%, 96.87%, 94.28%, and 0.9400, respectively. Explainable AI combined with SMOTE and a metaheuristic optimization algorithm facilitates an enhanced seizure detection. The novel SHAP-RELFR method provides an effective patient-non-specific feature selection, enabling this approach to be applicable across diverse patients. This proposed framework offers a step toward enhancing clinical decision-making by providing interpretable and versatile seizure detection models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cognitive Neurodynamics
Cognitive Neurodynamics 医学-神经科学
CiteScore
6.90
自引率
18.90%
发文量
140
审稿时长
12 months
期刊介绍: Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models. The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome. The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged. 1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics. 2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages. 3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信