{"title":"形状驱动的可解释人工智能与模拟退火优化癫痫检测使用多通道脑电图信号。","authors":"Indu Dokare, Sudha Gupta","doi":"10.1007/s11571-025-10269-3","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this research is to combine Explainable AI (XAI) with advanced optimization techniques to provide a unique framework for seizure detection. This proposed work investigates how to enhance patient-specific and patient-non-specific seizure detection models by combining multiband feature extraction, SHAP-based feature selection, SMOTE, and a metaheuristic algorithm for hyperparameter tuning.The discrete wavelet transform (DWT) is used to decompose EEG signals to retrieve entropy-based and statistical information. Simulated Annealing (SA) is employed to optimize the Random Forest (RF) classifier's hyperparameters, and SHAP (SHapley Additive exPlanations) values are utilized for feature selection. Furthermore, a novel technique SHAP-RELFR has been demonstrated to select patient-non-specific features. Additionally, SMOTE is employed to handle imbalanced data. The proposed methodology is evaluated on the CHB-MIT and Siena datasets using both patient-specific and patient-non-specific feature selection approaches. Experimental findings demonstrate that the proposed methodology significantly improves the performance of seizure detection. The average accuracy, precision, sensitivity, specificity, F1-score, and AUC obtained for a patient-non-specific case are 96.58%, 95.19%, 94.52%, 98.02%, 94.72%, and 0.9452, respectively, using the CHB-MIT dataset. For the Seina dataset, the average accuracy, precision, sensitivity, specificity, F1-score, and AUC obtained for a patient-non-specific case are 94.81%, 94.51%, 94.04%, 96.87%, 94.28%, and 0.9400, respectively. Explainable AI combined with SMOTE and a metaheuristic optimization algorithm facilitates an enhanced seizure detection. The novel SHAP-RELFR method provides an effective patient-non-specific feature selection, enabling this approach to be applicable across diverse patients. This proposed framework offers a step toward enhancing clinical decision-making by providing interpretable and versatile seizure detection models.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"19 1","pages":"85"},"PeriodicalIF":3.9000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12141179/pdf/","citationCount":"0","resultStr":"{\"title\":\"Shap-driven explainable AI with simulated annealing for optimized seizure detection using multichannel EEG signal.\",\"authors\":\"Indu Dokare, Sudha Gupta\",\"doi\":\"10.1007/s11571-025-10269-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The aim of this research is to combine Explainable AI (XAI) with advanced optimization techniques to provide a unique framework for seizure detection. This proposed work investigates how to enhance patient-specific and patient-non-specific seizure detection models by combining multiband feature extraction, SHAP-based feature selection, SMOTE, and a metaheuristic algorithm for hyperparameter tuning.The discrete wavelet transform (DWT) is used to decompose EEG signals to retrieve entropy-based and statistical information. Simulated Annealing (SA) is employed to optimize the Random Forest (RF) classifier's hyperparameters, and SHAP (SHapley Additive exPlanations) values are utilized for feature selection. Furthermore, a novel technique SHAP-RELFR has been demonstrated to select patient-non-specific features. Additionally, SMOTE is employed to handle imbalanced data. The proposed methodology is evaluated on the CHB-MIT and Siena datasets using both patient-specific and patient-non-specific feature selection approaches. Experimental findings demonstrate that the proposed methodology significantly improves the performance of seizure detection. The average accuracy, precision, sensitivity, specificity, F1-score, and AUC obtained for a patient-non-specific case are 96.58%, 95.19%, 94.52%, 98.02%, 94.72%, and 0.9452, respectively, using the CHB-MIT dataset. For the Seina dataset, the average accuracy, precision, sensitivity, specificity, F1-score, and AUC obtained for a patient-non-specific case are 94.81%, 94.51%, 94.04%, 96.87%, 94.28%, and 0.9400, respectively. Explainable AI combined with SMOTE and a metaheuristic optimization algorithm facilitates an enhanced seizure detection. The novel SHAP-RELFR method provides an effective patient-non-specific feature selection, enabling this approach to be applicable across diverse patients. This proposed framework offers a step toward enhancing clinical decision-making by providing interpretable and versatile seizure detection models.</p>\",\"PeriodicalId\":10500,\"journal\":{\"name\":\"Cognitive Neurodynamics\",\"volume\":\"19 1\",\"pages\":\"85\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12141179/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Neurodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11571-025-10269-3\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-025-10269-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Shap-driven explainable AI with simulated annealing for optimized seizure detection using multichannel EEG signal.
The aim of this research is to combine Explainable AI (XAI) with advanced optimization techniques to provide a unique framework for seizure detection. This proposed work investigates how to enhance patient-specific and patient-non-specific seizure detection models by combining multiband feature extraction, SHAP-based feature selection, SMOTE, and a metaheuristic algorithm for hyperparameter tuning.The discrete wavelet transform (DWT) is used to decompose EEG signals to retrieve entropy-based and statistical information. Simulated Annealing (SA) is employed to optimize the Random Forest (RF) classifier's hyperparameters, and SHAP (SHapley Additive exPlanations) values are utilized for feature selection. Furthermore, a novel technique SHAP-RELFR has been demonstrated to select patient-non-specific features. Additionally, SMOTE is employed to handle imbalanced data. The proposed methodology is evaluated on the CHB-MIT and Siena datasets using both patient-specific and patient-non-specific feature selection approaches. Experimental findings demonstrate that the proposed methodology significantly improves the performance of seizure detection. The average accuracy, precision, sensitivity, specificity, F1-score, and AUC obtained for a patient-non-specific case are 96.58%, 95.19%, 94.52%, 98.02%, 94.72%, and 0.9452, respectively, using the CHB-MIT dataset. For the Seina dataset, the average accuracy, precision, sensitivity, specificity, F1-score, and AUC obtained for a patient-non-specific case are 94.81%, 94.51%, 94.04%, 96.87%, 94.28%, and 0.9400, respectively. Explainable AI combined with SMOTE and a metaheuristic optimization algorithm facilitates an enhanced seizure detection. The novel SHAP-RELFR method provides an effective patient-non-specific feature selection, enabling this approach to be applicable across diverse patients. This proposed framework offers a step toward enhancing clinical decision-making by providing interpretable and versatile seizure detection models.
期刊介绍:
Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models.
The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome.
The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged.
1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics.
2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages.
3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.