Mohamed Abd Elaziz, Abdelghani Dahou, Mushira Dahaba, Dina Mohamed ElBeshlawy, Mohammed Azmi Al-Betar, Mohammed A Al-Qaness, Ahmed A Ewees, Arwa Mousa
{"title":"基于深度学习和双吸引子的能谷优化算法的下颌髁突检测。","authors":"Mohamed Abd Elaziz, Abdelghani Dahou, Mushira Dahaba, Dina Mohamed ElBeshlawy, Mohammed Azmi Al-Betar, Mohammed A Al-Qaness, Ahmed A Ewees, Arwa Mousa","doi":"10.1186/s12903-025-05725-9","DOIUrl":null,"url":null,"abstract":"<p><p>The temporomandibular joint (TMJ) constitutes a bilateral ginglymoarthrodial joint, wherein each condyle interacts with its corresponding glenoid fossa of the temporal bone. There is a critical need to understand better and accurately characterize the temporomandibular joint's diverse and variable morphological features, which can reveal significant variability across individuals, genders, and age groups. Within this study, we present an innovative condyle detection technique harnessing the potential of deep learning and feature selection (FS) models. Our approach encompasses a multi-stage process, commencing with using YOLOv8 to identify the region of interest (ROI). Subsequently, leveraging a sophisticated deep learning model, we extract salient features from the identified ROI. We modified the Energy Valley Optimizer (EVO) as an FS technique. To substantiate the efficacy of our developed method, a comprehensive dataset of 3000 panoramic images is employed, meticulously classified by two experienced maxillofacial Radiologists into four distinctive types: flat, pointed, angled, and round. The evaluation and comparison results confirm the efficiency of the proposed method in detecting condyle based on various evaluation performance indicators.</p>","PeriodicalId":9072,"journal":{"name":"BMC Oral Health","volume":"25 1","pages":"932"},"PeriodicalIF":3.1000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12144833/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mandibular condyle detection using deep learning and double attractor-based energy valley optimizer algorithm.\",\"authors\":\"Mohamed Abd Elaziz, Abdelghani Dahou, Mushira Dahaba, Dina Mohamed ElBeshlawy, Mohammed Azmi Al-Betar, Mohammed A Al-Qaness, Ahmed A Ewees, Arwa Mousa\",\"doi\":\"10.1186/s12903-025-05725-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The temporomandibular joint (TMJ) constitutes a bilateral ginglymoarthrodial joint, wherein each condyle interacts with its corresponding glenoid fossa of the temporal bone. There is a critical need to understand better and accurately characterize the temporomandibular joint's diverse and variable morphological features, which can reveal significant variability across individuals, genders, and age groups. Within this study, we present an innovative condyle detection technique harnessing the potential of deep learning and feature selection (FS) models. Our approach encompasses a multi-stage process, commencing with using YOLOv8 to identify the region of interest (ROI). Subsequently, leveraging a sophisticated deep learning model, we extract salient features from the identified ROI. We modified the Energy Valley Optimizer (EVO) as an FS technique. To substantiate the efficacy of our developed method, a comprehensive dataset of 3000 panoramic images is employed, meticulously classified by two experienced maxillofacial Radiologists into four distinctive types: flat, pointed, angled, and round. The evaluation and comparison results confirm the efficiency of the proposed method in detecting condyle based on various evaluation performance indicators.</p>\",\"PeriodicalId\":9072,\"journal\":{\"name\":\"BMC Oral Health\",\"volume\":\"25 1\",\"pages\":\"932\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12144833/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Oral Health\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12903-025-05725-9\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Oral Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12903-025-05725-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Mandibular condyle detection using deep learning and double attractor-based energy valley optimizer algorithm.
The temporomandibular joint (TMJ) constitutes a bilateral ginglymoarthrodial joint, wherein each condyle interacts with its corresponding glenoid fossa of the temporal bone. There is a critical need to understand better and accurately characterize the temporomandibular joint's diverse and variable morphological features, which can reveal significant variability across individuals, genders, and age groups. Within this study, we present an innovative condyle detection technique harnessing the potential of deep learning and feature selection (FS) models. Our approach encompasses a multi-stage process, commencing with using YOLOv8 to identify the region of interest (ROI). Subsequently, leveraging a sophisticated deep learning model, we extract salient features from the identified ROI. We modified the Energy Valley Optimizer (EVO) as an FS technique. To substantiate the efficacy of our developed method, a comprehensive dataset of 3000 panoramic images is employed, meticulously classified by two experienced maxillofacial Radiologists into four distinctive types: flat, pointed, angled, and round. The evaluation and comparison results confirm the efficiency of the proposed method in detecting condyle based on various evaluation performance indicators.
期刊介绍:
BMC Oral Health is an open access, peer-reviewed journal that considers articles on all aspects of the prevention, diagnosis and management of disorders of the mouth, teeth and gums, as well as related molecular genetics, pathophysiology, and epidemiology.