基于深度学习和双吸引子的能谷优化算法的下颌髁突检测。

IF 3.1 2区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE
Mohamed Abd Elaziz, Abdelghani Dahou, Mushira Dahaba, Dina Mohamed ElBeshlawy, Mohammed Azmi Al-Betar, Mohammed A Al-Qaness, Ahmed A Ewees, Arwa Mousa
{"title":"基于深度学习和双吸引子的能谷优化算法的下颌髁突检测。","authors":"Mohamed Abd Elaziz, Abdelghani Dahou, Mushira Dahaba, Dina Mohamed ElBeshlawy, Mohammed Azmi Al-Betar, Mohammed A Al-Qaness, Ahmed A Ewees, Arwa Mousa","doi":"10.1186/s12903-025-05725-9","DOIUrl":null,"url":null,"abstract":"<p><p>The temporomandibular joint (TMJ) constitutes a bilateral ginglymoarthrodial joint, wherein each condyle interacts with its corresponding glenoid fossa of the temporal bone. There is a critical need to understand better and accurately characterize the temporomandibular joint's diverse and variable morphological features, which can reveal significant variability across individuals, genders, and age groups. Within this study, we present an innovative condyle detection technique harnessing the potential of deep learning and feature selection (FS) models. Our approach encompasses a multi-stage process, commencing with using YOLOv8 to identify the region of interest (ROI). Subsequently, leveraging a sophisticated deep learning model, we extract salient features from the identified ROI. We modified the Energy Valley Optimizer (EVO) as an FS technique. To substantiate the efficacy of our developed method, a comprehensive dataset of 3000 panoramic images is employed, meticulously classified by two experienced maxillofacial Radiologists into four distinctive types: flat, pointed, angled, and round. The evaluation and comparison results confirm the efficiency of the proposed method in detecting condyle based on various evaluation performance indicators.</p>","PeriodicalId":9072,"journal":{"name":"BMC Oral Health","volume":"25 1","pages":"932"},"PeriodicalIF":3.1000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12144833/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mandibular condyle detection using deep learning and double attractor-based energy valley optimizer algorithm.\",\"authors\":\"Mohamed Abd Elaziz, Abdelghani Dahou, Mushira Dahaba, Dina Mohamed ElBeshlawy, Mohammed Azmi Al-Betar, Mohammed A Al-Qaness, Ahmed A Ewees, Arwa Mousa\",\"doi\":\"10.1186/s12903-025-05725-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The temporomandibular joint (TMJ) constitutes a bilateral ginglymoarthrodial joint, wherein each condyle interacts with its corresponding glenoid fossa of the temporal bone. There is a critical need to understand better and accurately characterize the temporomandibular joint's diverse and variable morphological features, which can reveal significant variability across individuals, genders, and age groups. Within this study, we present an innovative condyle detection technique harnessing the potential of deep learning and feature selection (FS) models. Our approach encompasses a multi-stage process, commencing with using YOLOv8 to identify the region of interest (ROI). Subsequently, leveraging a sophisticated deep learning model, we extract salient features from the identified ROI. We modified the Energy Valley Optimizer (EVO) as an FS technique. To substantiate the efficacy of our developed method, a comprehensive dataset of 3000 panoramic images is employed, meticulously classified by two experienced maxillofacial Radiologists into four distinctive types: flat, pointed, angled, and round. The evaluation and comparison results confirm the efficiency of the proposed method in detecting condyle based on various evaluation performance indicators.</p>\",\"PeriodicalId\":9072,\"journal\":{\"name\":\"BMC Oral Health\",\"volume\":\"25 1\",\"pages\":\"932\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12144833/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Oral Health\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12903-025-05725-9\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Oral Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12903-025-05725-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

摘要

颞下颌关节(TMJ)构成一个双侧关节,其中每个髁与其对应的颞骨盂窝相互作用。迫切需要更好和准确地描述颞下颌关节的多样化和可变形态学特征,这些特征可以揭示个体、性别和年龄组之间的显著差异。在这项研究中,我们提出了一种利用深度学习和特征选择(FS)模型的潜力的创新髁突检测技术。我们的方法包括一个多阶段的过程,从使用YOLOv8识别感兴趣的区域(ROI)开始。随后,利用复杂的深度学习模型,我们从已识别的ROI中提取显著特征。我们将能量谷优化器(EVO)改进为FS技术。为了证实我们开发的方法的有效性,我们使用了一个包含3000张全景图像的综合数据集,由两位经验丰富的颌面放射科医生精心分类为四种不同的类型:平面、尖、角和圆。评价和比较结果证实了该方法在多种评价性能指标下检测髁突的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mandibular condyle detection using deep learning and double attractor-based energy valley optimizer algorithm.

The temporomandibular joint (TMJ) constitutes a bilateral ginglymoarthrodial joint, wherein each condyle interacts with its corresponding glenoid fossa of the temporal bone. There is a critical need to understand better and accurately characterize the temporomandibular joint's diverse and variable morphological features, which can reveal significant variability across individuals, genders, and age groups. Within this study, we present an innovative condyle detection technique harnessing the potential of deep learning and feature selection (FS) models. Our approach encompasses a multi-stage process, commencing with using YOLOv8 to identify the region of interest (ROI). Subsequently, leveraging a sophisticated deep learning model, we extract salient features from the identified ROI. We modified the Energy Valley Optimizer (EVO) as an FS technique. To substantiate the efficacy of our developed method, a comprehensive dataset of 3000 panoramic images is employed, meticulously classified by two experienced maxillofacial Radiologists into four distinctive types: flat, pointed, angled, and round. The evaluation and comparison results confirm the efficiency of the proposed method in detecting condyle based on various evaluation performance indicators.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Oral Health
BMC Oral Health DENTISTRY, ORAL SURGERY & MEDICINE-
CiteScore
3.90
自引率
6.90%
发文量
481
审稿时长
6-12 weeks
期刊介绍: BMC Oral Health is an open access, peer-reviewed journal that considers articles on all aspects of the prevention, diagnosis and management of disorders of the mouth, teeth and gums, as well as related molecular genetics, pathophysiology, and epidemiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信