使用机器学习算法预测创伤性胸部损伤的存在。

IF 2 Q1 EMERGENCY MEDICINE
Archives of Academic Emergency Medicine Pub Date : 2025-03-17 eCollection Date: 2025-01-01 DOI:10.22037/aaemj.v13i1.2512
Mohammadhossein Vazirizadeh-Mahabadi, Amir Ghaffari Jolfayi, Mostafa Hosseini, Mobina Yarahmadi, Hamed Zarei, Mohsen Masoodi, Arash Sarveazad, Mahmoud Yousefifard
{"title":"使用机器学习算法预测创伤性胸部损伤的存在。","authors":"Mohammadhossein Vazirizadeh-Mahabadi, Amir Ghaffari Jolfayi, Mostafa Hosseini, Mobina Yarahmadi, Hamed Zarei, Mohsen Masoodi, Arash Sarveazad, Mahmoud Yousefifard","doi":"10.22037/aaemj.v13i1.2512","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Various tools have been developed to determine the priority of radiography in trauma patients. This study aimed to investigate the role of machine learning models in predicting chest injuries following multiple trauma.</p><p><strong>Methods: </strong>We used the database of a comprehensive cross-sectional survey conducted in 2015. Eight machine learning models were developed using demographic characteristics, physical exam findings, and radiologic results of 2860 patients.</p><p><strong>Results: </strong>Area under the receiver operating characteristic curve (AUC) was greater than 0.96 in Random Forest, Gradient Boosting, XGBoost, Decision Tree, Support Vector Machine (SVM), Logistic Regression, K-Nearest Neighbors (KNN), and Neural Network models. The random forest model, XGBoost and Gradient Boosting had the highest accuracy (0.99). Sensitivity was also highest in the Gradient Boosting, XGBoost and KNN models (0.99). The specificity of all of the models in predicting chest radiography outcomes of multiple trauma patients was higher than 0.97, except for logistic regression and SVM (0.912 and 0.885 respectively).</p><p><strong>Conclusions: </strong>Our study highlights the strong potential of machine learning models, especially Random Forest and Gradient Boosting, in predicting chest trauma outcomes with high accuracy and sensitivity.</p>","PeriodicalId":8146,"journal":{"name":"Archives of Academic Emergency Medicine","volume":"13 1","pages":"e41"},"PeriodicalIF":2.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12145125/pdf/","citationCount":"0","resultStr":"{\"title\":\"Predicting the Presence of Traumatic Chest Injuries Using Machine Learning Algorithm.\",\"authors\":\"Mohammadhossein Vazirizadeh-Mahabadi, Amir Ghaffari Jolfayi, Mostafa Hosseini, Mobina Yarahmadi, Hamed Zarei, Mohsen Masoodi, Arash Sarveazad, Mahmoud Yousefifard\",\"doi\":\"10.22037/aaemj.v13i1.2512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Various tools have been developed to determine the priority of radiography in trauma patients. This study aimed to investigate the role of machine learning models in predicting chest injuries following multiple trauma.</p><p><strong>Methods: </strong>We used the database of a comprehensive cross-sectional survey conducted in 2015. Eight machine learning models were developed using demographic characteristics, physical exam findings, and radiologic results of 2860 patients.</p><p><strong>Results: </strong>Area under the receiver operating characteristic curve (AUC) was greater than 0.96 in Random Forest, Gradient Boosting, XGBoost, Decision Tree, Support Vector Machine (SVM), Logistic Regression, K-Nearest Neighbors (KNN), and Neural Network models. The random forest model, XGBoost and Gradient Boosting had the highest accuracy (0.99). Sensitivity was also highest in the Gradient Boosting, XGBoost and KNN models (0.99). The specificity of all of the models in predicting chest radiography outcomes of multiple trauma patients was higher than 0.97, except for logistic regression and SVM (0.912 and 0.885 respectively).</p><p><strong>Conclusions: </strong>Our study highlights the strong potential of machine learning models, especially Random Forest and Gradient Boosting, in predicting chest trauma outcomes with high accuracy and sensitivity.</p>\",\"PeriodicalId\":8146,\"journal\":{\"name\":\"Archives of Academic Emergency Medicine\",\"volume\":\"13 1\",\"pages\":\"e41\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12145125/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Academic Emergency Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22037/aaemj.v13i1.2512\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"EMERGENCY MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Academic Emergency Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22037/aaemj.v13i1.2512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"EMERGENCY MEDICINE","Score":null,"Total":0}
引用次数: 0

摘要

已经开发了各种工具来确定创伤患者放射学的优先级。本研究旨在探讨机器学习模型在预测多重创伤后胸部损伤中的作用。方法:采用2015年开展的全面横断面调查数据库。根据2860名患者的人口统计学特征、体格检查结果和放射学结果,开发了8个机器学习模型。结果:随机森林、梯度增强、XGBoost、决策树、支持向量机(SVM)、Logistic回归、k近邻(KNN)和神经网络模型的受试者工作特征曲线下面积(AUC)均大于0.96。随机森林模型、XGBoost和Gradient Boosting的准确率最高(0.99)。梯度增强、XGBoost和KNN模型的灵敏度也最高(0.99)。除logistic回归和SVM预测胸片预后的特异性分别为0.912和0.885外,其余模型预测多发创伤患者胸片预后的特异性均高于0.97。结论:我们的研究强调了机器学习模型的强大潜力,特别是随机森林和梯度增强,在预测胸部创伤结果方面具有很高的准确性和敏感性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Predicting the Presence of Traumatic Chest Injuries Using Machine Learning Algorithm.

Predicting the Presence of Traumatic Chest Injuries Using Machine Learning Algorithm.

Predicting the Presence of Traumatic Chest Injuries Using Machine Learning Algorithm.

Predicting the Presence of Traumatic Chest Injuries Using Machine Learning Algorithm.

Introduction: Various tools have been developed to determine the priority of radiography in trauma patients. This study aimed to investigate the role of machine learning models in predicting chest injuries following multiple trauma.

Methods: We used the database of a comprehensive cross-sectional survey conducted in 2015. Eight machine learning models were developed using demographic characteristics, physical exam findings, and radiologic results of 2860 patients.

Results: Area under the receiver operating characteristic curve (AUC) was greater than 0.96 in Random Forest, Gradient Boosting, XGBoost, Decision Tree, Support Vector Machine (SVM), Logistic Regression, K-Nearest Neighbors (KNN), and Neural Network models. The random forest model, XGBoost and Gradient Boosting had the highest accuracy (0.99). Sensitivity was also highest in the Gradient Boosting, XGBoost and KNN models (0.99). The specificity of all of the models in predicting chest radiography outcomes of multiple trauma patients was higher than 0.97, except for logistic regression and SVM (0.912 and 0.885 respectively).

Conclusions: Our study highlights the strong potential of machine learning models, especially Random Forest and Gradient Boosting, in predicting chest trauma outcomes with high accuracy and sensitivity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archives of Academic Emergency Medicine
Archives of Academic Emergency Medicine Medicine-Emergency Medicine
CiteScore
8.90
自引率
7.40%
发文量
0
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信