{"title":"一种新的程序性细胞死亡特征预测透明细胞肾细胞癌的临床结果,并确定PLK1作为治疗靶点。","authors":"Hao-Tian Tan, Chang-Yu Ma, Chong-Hao Sun, Shu-Zhan Sun, Ming-Xiao Zhang, Jian-Feng Wang","doi":"10.1007/s10495-025-02126-9","DOIUrl":null,"url":null,"abstract":"<p><p>Clear-cell renal cell carcinoma (ccRCC) remains therapeutically challenging despite recent treatment advances. Here, we analyzed 18 distinct programmed cell death (PCD) patterns across multiple cohorts and developed a novel prognostic scoring system (PCDscore) based on eight PCD-related genes. We established an eight-gene signature that demonstrated robust predictive capability and, when integrated with clinical staging, yielded a nomogram with strong performance across independent cohorts. High PCDscore groups exhibited enhanced immunosuppressive features, while low PCDscore groups showed better immunotherapy responses. Single-cell analysis of 54,166 cells revealed activation of multiple oncogenic pathways in high PCDscore tumor cells, along with extensive intercellular communication networks. To further investigate the role of PLK1, we identified 282 co-expressed genes and conducted functional enrichment analyses, revealing its significant association with pathways such as the cell cycle and NF-κB signaling. A protein-protein interaction (PPI) network and Bayesian network analysis highlighted PLK1 as a key regulator of PKMYT1, with CDC20 and CCNB2 acting upstream. Functional validation confirmed PLK1, the highest weighted gene in our signature, significantly influences tumor progression in ccRCC. This study establishes a reliable prognostic scoring system and identifies PLK1 as a potential therapeutic target, providing valuable clinical guidance for treatment decision-making in ccRCC patients.</p>","PeriodicalId":8062,"journal":{"name":"Apoptosis","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel programmed cell death signature predicts clinical outcomes in clear cell renal cell carcinoma and identifies PLK1 as a therapeutic target.\",\"authors\":\"Hao-Tian Tan, Chang-Yu Ma, Chong-Hao Sun, Shu-Zhan Sun, Ming-Xiao Zhang, Jian-Feng Wang\",\"doi\":\"10.1007/s10495-025-02126-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Clear-cell renal cell carcinoma (ccRCC) remains therapeutically challenging despite recent treatment advances. Here, we analyzed 18 distinct programmed cell death (PCD) patterns across multiple cohorts and developed a novel prognostic scoring system (PCDscore) based on eight PCD-related genes. We established an eight-gene signature that demonstrated robust predictive capability and, when integrated with clinical staging, yielded a nomogram with strong performance across independent cohorts. High PCDscore groups exhibited enhanced immunosuppressive features, while low PCDscore groups showed better immunotherapy responses. Single-cell analysis of 54,166 cells revealed activation of multiple oncogenic pathways in high PCDscore tumor cells, along with extensive intercellular communication networks. To further investigate the role of PLK1, we identified 282 co-expressed genes and conducted functional enrichment analyses, revealing its significant association with pathways such as the cell cycle and NF-κB signaling. A protein-protein interaction (PPI) network and Bayesian network analysis highlighted PLK1 as a key regulator of PKMYT1, with CDC20 and CCNB2 acting upstream. Functional validation confirmed PLK1, the highest weighted gene in our signature, significantly influences tumor progression in ccRCC. This study establishes a reliable prognostic scoring system and identifies PLK1 as a potential therapeutic target, providing valuable clinical guidance for treatment decision-making in ccRCC patients.</p>\",\"PeriodicalId\":8062,\"journal\":{\"name\":\"Apoptosis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Apoptosis\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10495-025-02126-9\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Apoptosis","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10495-025-02126-9","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
A novel programmed cell death signature predicts clinical outcomes in clear cell renal cell carcinoma and identifies PLK1 as a therapeutic target.
Clear-cell renal cell carcinoma (ccRCC) remains therapeutically challenging despite recent treatment advances. Here, we analyzed 18 distinct programmed cell death (PCD) patterns across multiple cohorts and developed a novel prognostic scoring system (PCDscore) based on eight PCD-related genes. We established an eight-gene signature that demonstrated robust predictive capability and, when integrated with clinical staging, yielded a nomogram with strong performance across independent cohorts. High PCDscore groups exhibited enhanced immunosuppressive features, while low PCDscore groups showed better immunotherapy responses. Single-cell analysis of 54,166 cells revealed activation of multiple oncogenic pathways in high PCDscore tumor cells, along with extensive intercellular communication networks. To further investigate the role of PLK1, we identified 282 co-expressed genes and conducted functional enrichment analyses, revealing its significant association with pathways such as the cell cycle and NF-κB signaling. A protein-protein interaction (PPI) network and Bayesian network analysis highlighted PLK1 as a key regulator of PKMYT1, with CDC20 and CCNB2 acting upstream. Functional validation confirmed PLK1, the highest weighted gene in our signature, significantly influences tumor progression in ccRCC. This study establishes a reliable prognostic scoring system and identifies PLK1 as a potential therapeutic target, providing valuable clinical guidance for treatment decision-making in ccRCC patients.
期刊介绍:
Apoptosis, a monthly international peer-reviewed journal, focuses on the rapid publication of innovative investigations into programmed cell death. The journal aims to stimulate research on the mechanisms and role of apoptosis in various human diseases, such as cancer, autoimmune disease, viral infection, AIDS, cardiovascular disease, neurodegenerative disorders, osteoporosis, and aging. The Editor-In-Chief acknowledges the importance of advancing clinical therapies for apoptosis-related diseases. Apoptosis considers Original Articles, Reviews, Short Communications, Letters to the Editor, and Book Reviews for publication.