老年加重小鼠高眼压表型

IF 6.9 2区 医学 Q1 GERIATRICS & GERONTOLOGY
Priyamvada M Pitale, Solomon E Gibson, Caroline C Keehn, Arman T Yazdian, Guofu Shen, Benjamin J Frankfort
{"title":"老年加重小鼠高眼压表型","authors":"Priyamvada M Pitale, Solomon E Gibson, Caroline C Keehn, Arman T Yazdian, Guofu Shen, Benjamin J Frankfort","doi":"10.14336/AD.2025.0349","DOIUrl":null,"url":null,"abstract":"<p><p>Glaucoma is a neurodegenerative disorder of the optic nerve and retinal ganglion cells (RGCs) and a major cause of blindness. The two most important risk factors for glaucoma are ocular hypertension (OHT) and advanced age. In this study, we explored the combined impact of aging and OHT on retinal neuronal and microvasculature health. We induced OHT using the bead-injection model in 12 week old (young) and 1.5 year old (old) mice and monitored intraocular pressure (IOP) for 2 weeks. We then explored vascular phenotypes, blood retinal barrier components, RGC counts, and electroretinogram (ERG) changes. Aged mice displayed reduced retinal microvasculature complexity, retinal vascular phenotypes in all three retinal capillary plexi (RCPs), and abnormal ERGs. Aging also impacted basement membrane (BM) and tight junction (TJ) morphology. The impact of OHT was much more evident in old mice; RGC loss was exacerbated, retinal vascular phenotypes were magnified across all three RCPs, and BM and TJ phenotypes were much more severe. However, the impact of OHT on retinal function was unchanged in old mice. Interestingly, the nature of these phenotypes was not equivalent among all RCPs, suggesting regional shared and distinct susceptibilities to aging and OHT. Taken together, aging causes multiple neurovascular phenotypes in mouse retinas, and OHT causes more severe effects in old mice. This suggests an interaction between aging and OHT that may help explain the increased prevalence of glaucoma in older humans.</p>","PeriodicalId":7434,"journal":{"name":"Aging and Disease","volume":" ","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advanced Age Worsens Phenotypes of Ocular Hypertension in Mice.\",\"authors\":\"Priyamvada M Pitale, Solomon E Gibson, Caroline C Keehn, Arman T Yazdian, Guofu Shen, Benjamin J Frankfort\",\"doi\":\"10.14336/AD.2025.0349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glaucoma is a neurodegenerative disorder of the optic nerve and retinal ganglion cells (RGCs) and a major cause of blindness. The two most important risk factors for glaucoma are ocular hypertension (OHT) and advanced age. In this study, we explored the combined impact of aging and OHT on retinal neuronal and microvasculature health. We induced OHT using the bead-injection model in 12 week old (young) and 1.5 year old (old) mice and monitored intraocular pressure (IOP) for 2 weeks. We then explored vascular phenotypes, blood retinal barrier components, RGC counts, and electroretinogram (ERG) changes. Aged mice displayed reduced retinal microvasculature complexity, retinal vascular phenotypes in all three retinal capillary plexi (RCPs), and abnormal ERGs. Aging also impacted basement membrane (BM) and tight junction (TJ) morphology. The impact of OHT was much more evident in old mice; RGC loss was exacerbated, retinal vascular phenotypes were magnified across all three RCPs, and BM and TJ phenotypes were much more severe. However, the impact of OHT on retinal function was unchanged in old mice. Interestingly, the nature of these phenotypes was not equivalent among all RCPs, suggesting regional shared and distinct susceptibilities to aging and OHT. Taken together, aging causes multiple neurovascular phenotypes in mouse retinas, and OHT causes more severe effects in old mice. This suggests an interaction between aging and OHT that may help explain the increased prevalence of glaucoma in older humans.</p>\",\"PeriodicalId\":7434,\"journal\":{\"name\":\"Aging and Disease\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aging and Disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.14336/AD.2025.0349\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GERIATRICS & GERONTOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging and Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.14336/AD.2025.0349","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

青光眼是一种视神经和视网膜神经节细胞(RGCs)的神经退行性疾病,是失明的主要原因。青光眼的两个最重要的危险因素是高眼压(OHT)和高龄。在这项研究中,我们探讨了衰老和OHT对视网膜神经元和微血管健康的综合影响。我们采用头注射模型对12周龄(幼龄)和1.5岁(高龄)小鼠进行OHT诱导,并监测眼压(IOP) 2周。然后我们探讨了血管表型、血液视网膜屏障成分、RGC计数和视网膜电图(ERG)变化。老年小鼠表现出视网膜微血管复杂性降低,所有三个视网膜毛细血管丛(rcp)的视网膜血管表型和异常的ERGs。老化对基底膜(BM)和紧密结(TJ)形态也有影响。OHT对老年小鼠的影响更为明显;RGC丢失加剧,视网膜血管表型在所有三个rcp中都被放大,BM和TJ表型更为严重。然而,OHT对老年小鼠视网膜功能的影响没有变化。有趣的是,这些表型的性质在所有rcp中并不相同,这表明区域对衰老和OHT有共同的和不同的易感性。综上所述,衰老导致小鼠视网膜出现多种神经血管表型,而OHT对老年小鼠的影响更为严重。这表明衰老和OHT之间的相互作用可能有助于解释老年人青光眼患病率增加的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advanced Age Worsens Phenotypes of Ocular Hypertension in Mice.

Glaucoma is a neurodegenerative disorder of the optic nerve and retinal ganglion cells (RGCs) and a major cause of blindness. The two most important risk factors for glaucoma are ocular hypertension (OHT) and advanced age. In this study, we explored the combined impact of aging and OHT on retinal neuronal and microvasculature health. We induced OHT using the bead-injection model in 12 week old (young) and 1.5 year old (old) mice and monitored intraocular pressure (IOP) for 2 weeks. We then explored vascular phenotypes, blood retinal barrier components, RGC counts, and electroretinogram (ERG) changes. Aged mice displayed reduced retinal microvasculature complexity, retinal vascular phenotypes in all three retinal capillary plexi (RCPs), and abnormal ERGs. Aging also impacted basement membrane (BM) and tight junction (TJ) morphology. The impact of OHT was much more evident in old mice; RGC loss was exacerbated, retinal vascular phenotypes were magnified across all three RCPs, and BM and TJ phenotypes were much more severe. However, the impact of OHT on retinal function was unchanged in old mice. Interestingly, the nature of these phenotypes was not equivalent among all RCPs, suggesting regional shared and distinct susceptibilities to aging and OHT. Taken together, aging causes multiple neurovascular phenotypes in mouse retinas, and OHT causes more severe effects in old mice. This suggests an interaction between aging and OHT that may help explain the increased prevalence of glaucoma in older humans.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aging and Disease
Aging and Disease GERIATRICS & GERONTOLOGY-
CiteScore
14.60
自引率
2.70%
发文量
138
审稿时长
10 weeks
期刊介绍: Aging & Disease (A&D) is an open-access online journal dedicated to publishing groundbreaking research on the biology of aging, the pathophysiology of age-related diseases, and innovative therapies for conditions affecting the elderly. The scope encompasses various diseases such as Stroke, Alzheimer's disease, Parkinson’s disease, Epilepsy, Dementia, Depression, Cardiovascular Disease, Cancer, Arthritis, Cataract, Osteoporosis, Diabetes, and Hypertension. The journal welcomes studies involving animal models as well as human tissues or cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信