Se Woo Park , Hee Chan Moon , Seok Jin Hong , Anna Choi , Seung-Lee Lee , Da Hae Park , Eun Shin , Jung Hyun Jo , Dong Hee Koh , Jin Lee , Jong-Uk Hou , Kyong Joo Lee
{"title":"人工智能驱动的三维光学衍射断层扫描增强胆道癌诊断。","authors":"Se Woo Park , Hee Chan Moon , Seok Jin Hong , Anna Choi , Seung-Lee Lee , Da Hae Park , Eun Shin , Jung Hyun Jo , Dong Hee Koh , Jin Lee , Jong-Uk Hou , Kyong Joo Lee","doi":"10.1016/j.ymeth.2025.06.003","DOIUrl":null,"url":null,"abstract":"<div><div>Biliary tract cancer is associated with distinct metabolic alterations, particularly in lipid metabolism. This study aimed to classify biliary tract cancer cells automatically based on lipid droplet (LD) characteristics using three-dimensional (3D) optical diffraction tomography (ODT) combined with convolutional neural networks (CNNs). Human biliary tract cancer cell lines (SNU1196, SNU308, and SNU478) and a normal cholangiocyte cell line (H69) were cultured to evaluate the LD volume, mass, and count. We generated 3D refractive index tomograms and developed a CNN-based diagnostic system for automated classification. The biliary tract cancer cells exhibited significantly increased LD volume, mass, and count compared with those of normal cholangiocytes, reflecting distinct metabolic profiles. The EfficientNet-b3 model achieved an area under the curve (AUC) of 0.982 and an accuracy of 93.79%. Incorporating LD metadata, such as volume and dry mass, improved performance, yielding an AUC of 0.997 and an accuracy of 97.94%. Combining LD metadata with multi-view score fusion enhanced diagnostic performance (AUC: 0.999, accuracy: 98.61%). Further, LayerCAM analysis revealed that the model focused on LD-rich cytoplasmic regions, thereby aligning with known metabolic phenotypes. Overall, our findings demonstrate the diagnostic potential of LD characteristics and support the clinical utility of 3D ODT combined with deep learning for early detection of biliary tract cancer and future multimodal applications.</div></div>","PeriodicalId":390,"journal":{"name":"Methods","volume":"241 ","pages":"Pages 196-203"},"PeriodicalIF":4.3000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing biliary tract cancer diagnosis using AI-driven 3D optical diffraction tomography\",\"authors\":\"Se Woo Park , Hee Chan Moon , Seok Jin Hong , Anna Choi , Seung-Lee Lee , Da Hae Park , Eun Shin , Jung Hyun Jo , Dong Hee Koh , Jin Lee , Jong-Uk Hou , Kyong Joo Lee\",\"doi\":\"10.1016/j.ymeth.2025.06.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Biliary tract cancer is associated with distinct metabolic alterations, particularly in lipid metabolism. This study aimed to classify biliary tract cancer cells automatically based on lipid droplet (LD) characteristics using three-dimensional (3D) optical diffraction tomography (ODT) combined with convolutional neural networks (CNNs). Human biliary tract cancer cell lines (SNU1196, SNU308, and SNU478) and a normal cholangiocyte cell line (H69) were cultured to evaluate the LD volume, mass, and count. We generated 3D refractive index tomograms and developed a CNN-based diagnostic system for automated classification. The biliary tract cancer cells exhibited significantly increased LD volume, mass, and count compared with those of normal cholangiocytes, reflecting distinct metabolic profiles. The EfficientNet-b3 model achieved an area under the curve (AUC) of 0.982 and an accuracy of 93.79%. Incorporating LD metadata, such as volume and dry mass, improved performance, yielding an AUC of 0.997 and an accuracy of 97.94%. Combining LD metadata with multi-view score fusion enhanced diagnostic performance (AUC: 0.999, accuracy: 98.61%). Further, LayerCAM analysis revealed that the model focused on LD-rich cytoplasmic regions, thereby aligning with known metabolic phenotypes. Overall, our findings demonstrate the diagnostic potential of LD characteristics and support the clinical utility of 3D ODT combined with deep learning for early detection of biliary tract cancer and future multimodal applications.</div></div>\",\"PeriodicalId\":390,\"journal\":{\"name\":\"Methods\",\"volume\":\"241 \",\"pages\":\"Pages 196-203\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1046202325001434\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1046202325001434","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Enhancing biliary tract cancer diagnosis using AI-driven 3D optical diffraction tomography
Biliary tract cancer is associated with distinct metabolic alterations, particularly in lipid metabolism. This study aimed to classify biliary tract cancer cells automatically based on lipid droplet (LD) characteristics using three-dimensional (3D) optical diffraction tomography (ODT) combined with convolutional neural networks (CNNs). Human biliary tract cancer cell lines (SNU1196, SNU308, and SNU478) and a normal cholangiocyte cell line (H69) were cultured to evaluate the LD volume, mass, and count. We generated 3D refractive index tomograms and developed a CNN-based diagnostic system for automated classification. The biliary tract cancer cells exhibited significantly increased LD volume, mass, and count compared with those of normal cholangiocytes, reflecting distinct metabolic profiles. The EfficientNet-b3 model achieved an area under the curve (AUC) of 0.982 and an accuracy of 93.79%. Incorporating LD metadata, such as volume and dry mass, improved performance, yielding an AUC of 0.997 and an accuracy of 97.94%. Combining LD metadata with multi-view score fusion enhanced diagnostic performance (AUC: 0.999, accuracy: 98.61%). Further, LayerCAM analysis revealed that the model focused on LD-rich cytoplasmic regions, thereby aligning with known metabolic phenotypes. Overall, our findings demonstrate the diagnostic potential of LD characteristics and support the clinical utility of 3D ODT combined with deep learning for early detection of biliary tract cancer and future multimodal applications.
期刊介绍:
Methods focuses on rapidly developing techniques in the experimental biological and medical sciences.
Each topical issue, organized by a guest editor who is an expert in the area covered, consists solely of invited quality articles by specialist authors, many of them reviews. Issues are devoted to specific technical approaches with emphasis on clear detailed descriptions of protocols that allow them to be reproduced easily. The background information provided enables researchers to understand the principles underlying the methods; other helpful sections include comparisons of alternative methods giving the advantages and disadvantages of particular methods, guidance on avoiding potential pitfalls, and suggestions for troubleshooting.