Andrew J Mongue, Tamsin E Woodman, Hollie Marshall, Arkadiy Garber, José C Franco, John P McCutcheon, Laura Ross
{"title":"雄性和雌性柑橘粉蚧在父系基因组消除条件下的进化轨迹对比。","authors":"Andrew J Mongue, Tamsin E Woodman, Hollie Marshall, Arkadiy Garber, José C Franco, John P McCutcheon, Laura Ross","doi":"10.1111/mec.17826","DOIUrl":null,"url":null,"abstract":"<p><p>Most studies of sex-biased genes explore their evolution in familiar chromosomal sex determination systems, leaving the evolution of sex differences under alternative reproductive systems unknown. Here we explore the system of paternal genome elimination employed by mealybugs (Hemiptera: Pseudococcidae) which have no sex chromosomes. Instead, all chromosomes are autosomal and inherited in two copies, but sex is determined by the ploidy of expression. Females express both parental alleles, but males reliably silence their paternally inherited chromosomes, creating genome-wide haploid expression in males and diploid expression in females. Additionally, sons do not express alleles directly inherited from their fathers, potentially disrupting the evolution of male-benefiting traits. To understand how these dynamics impact molecular evolution, we generated sex-specific RNAseq, a new gene annotation, and whole-genome population sequencing of the citrus mealybug, Planococcus citri. We found that genes expressed primarily in females hold more variation and evolve more quickly than those expressed in males or both sexes. Conversely, we found more apparent adaptation in genes expressed mainly in males than in those expressed in females. Put together, in this paternal genome elimination system there is slower change on the male side but, by increasing selective scrutiny, an increase in the degree of adaptation in these genes. These results expand our understanding of evolution in a non-Mendelian genetic system and the data we generated should prove useful for future research on this pest insect.</p>","PeriodicalId":210,"journal":{"name":"Molecular Ecology","volume":" ","pages":"e17826"},"PeriodicalIF":4.5000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contrasting Evolutionary Trajectories Under Paternal Genome Elimination in Male and Female Citrus Mealybugs.\",\"authors\":\"Andrew J Mongue, Tamsin E Woodman, Hollie Marshall, Arkadiy Garber, José C Franco, John P McCutcheon, Laura Ross\",\"doi\":\"10.1111/mec.17826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Most studies of sex-biased genes explore their evolution in familiar chromosomal sex determination systems, leaving the evolution of sex differences under alternative reproductive systems unknown. Here we explore the system of paternal genome elimination employed by mealybugs (Hemiptera: Pseudococcidae) which have no sex chromosomes. Instead, all chromosomes are autosomal and inherited in two copies, but sex is determined by the ploidy of expression. Females express both parental alleles, but males reliably silence their paternally inherited chromosomes, creating genome-wide haploid expression in males and diploid expression in females. Additionally, sons do not express alleles directly inherited from their fathers, potentially disrupting the evolution of male-benefiting traits. To understand how these dynamics impact molecular evolution, we generated sex-specific RNAseq, a new gene annotation, and whole-genome population sequencing of the citrus mealybug, Planococcus citri. We found that genes expressed primarily in females hold more variation and evolve more quickly than those expressed in males or both sexes. Conversely, we found more apparent adaptation in genes expressed mainly in males than in those expressed in females. Put together, in this paternal genome elimination system there is slower change on the male side but, by increasing selective scrutiny, an increase in the degree of adaptation in these genes. These results expand our understanding of evolution in a non-Mendelian genetic system and the data we generated should prove useful for future research on this pest insect.</p>\",\"PeriodicalId\":210,\"journal\":{\"name\":\"Molecular Ecology\",\"volume\":\" \",\"pages\":\"e17826\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/mec.17826\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mec.17826","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Contrasting Evolutionary Trajectories Under Paternal Genome Elimination in Male and Female Citrus Mealybugs.
Most studies of sex-biased genes explore their evolution in familiar chromosomal sex determination systems, leaving the evolution of sex differences under alternative reproductive systems unknown. Here we explore the system of paternal genome elimination employed by mealybugs (Hemiptera: Pseudococcidae) which have no sex chromosomes. Instead, all chromosomes are autosomal and inherited in two copies, but sex is determined by the ploidy of expression. Females express both parental alleles, but males reliably silence their paternally inherited chromosomes, creating genome-wide haploid expression in males and diploid expression in females. Additionally, sons do not express alleles directly inherited from their fathers, potentially disrupting the evolution of male-benefiting traits. To understand how these dynamics impact molecular evolution, we generated sex-specific RNAseq, a new gene annotation, and whole-genome population sequencing of the citrus mealybug, Planococcus citri. We found that genes expressed primarily in females hold more variation and evolve more quickly than those expressed in males or both sexes. Conversely, we found more apparent adaptation in genes expressed mainly in males than in those expressed in females. Put together, in this paternal genome elimination system there is slower change on the male side but, by increasing selective scrutiny, an increase in the degree of adaptation in these genes. These results expand our understanding of evolution in a non-Mendelian genetic system and the data we generated should prove useful for future research on this pest insect.
期刊介绍:
Molecular Ecology publishes papers that utilize molecular genetic techniques to address consequential questions in ecology, evolution, behaviour and conservation. Studies may employ neutral markers for inference about ecological and evolutionary processes or examine ecologically important genes and their products directly. We discourage papers that are primarily descriptive and are relevant only to the taxon being studied. Papers reporting on molecular marker development, molecular diagnostics, barcoding, or DNA taxonomy, or technical methods should be re-directed to our sister journal, Molecular Ecology Resources. Likewise, papers with a strongly applied focus should be submitted to Evolutionary Applications. Research areas of interest to Molecular Ecology include:
* population structure and phylogeography
* reproductive strategies
* relatedness and kin selection
* sex allocation
* population genetic theory
* analytical methods development
* conservation genetics
* speciation genetics
* microbial biodiversity
* evolutionary dynamics of QTLs
* ecological interactions
* molecular adaptation and environmental genomics
* impact of genetically modified organisms