具有内加热核心的波状圆柱体中双扩散输运和熵生成的分析:MHD和辐射对卡森Cu─H2O纳米流体的影响

IF 3.4 3区 工程技术 Q3 ENERGY & FUELS
Mohammed Azeez Alomari, Ahmed M. Hassan, Abdalrahman Alajmi, Ameer K. Salho, Abdellatif M. Sadeq, Faris Alqurashi, Mujtaba A. Flayyih
{"title":"具有内加热核心的波状圆柱体中双扩散输运和熵生成的分析:MHD和辐射对卡森Cu─H2O纳米流体的影响","authors":"Mohammed Azeez Alomari,&nbsp;Ahmed M. Hassan,&nbsp;Abdalrahman Alajmi,&nbsp;Ameer K. Salho,&nbsp;Abdellatif M. Sadeq,&nbsp;Faris Alqurashi,&nbsp;Mujtaba A. Flayyih","doi":"10.1002/ese3.70069","DOIUrl":null,"url":null,"abstract":"<p>This study investigates double-diffusive transport and entropy generation in a wavy cylindrical enclosure containing Cu─H<sub>2</sub>O Casson nanofluid under magnetic field and thermal radiation effects. The governing equations were solved numerically using the finite element method with Galerkin formulation. The investigation covered parametric ranges including Rayleigh number (10³ ≤ <i>Ra</i> ≤ 10⁶), Hartmann number (0 ≤ <i>Ha</i> ≤ 40), magnetic field inclination (0° ≤ <i>γ</i> ≤ 90°), nanoparticle volume fraction (0 ≤ <i>φ</i> ≤ 0.15), Casson parameter (0.1 ≤ <i>η</i> ≤ 1), radiation parameter (0 ≤ <i>Rd</i> ≤ 4), thermal conductivity parameter (0 ≤ <i>λ</i> ≤ 4), Lewis number (0.5 ≤ <i>Le</i> ≤ 5), and buoyancy ratio (0.25 ≤ <i>Nz</i> ≤ 1.5). Results demonstrated that increasing <i>Ra</i> from 10³ to 10⁶ enhanced heat transfer by 60%, while increasing <i>Ha</i> to 40 reduced fluid circulation by 75%. The Casson parameter significantly influenced flow characteristics, with stream function values increasing by 75% as <i>η</i> approached Newtonian behavior. Thermal radiation parameters jointly moderated temperature gradients, with <i>Rd</i> causing a 15%–20% reduction in thermal stratification. The Lewis number and buoyancy ratio showed strong coupled effects, with the Sherwood number increasing by 150% as <i>Le</i> increased from 0.5 to 5. These findings have practical applications in advanced heat exchanger design, thermal energy storage systems, electronic cooling technologies, and biomedical devices, where controlled heat and mass transfer of non-Newtonian fluids is crucial.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"13 6","pages":"2810-2841"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.70069","citationCount":"0","resultStr":"{\"title\":\"Analysis of Double-Diffusive Transport and Entropy Generation in a Wavy Cylindrical Enclosure With Inner Heated Core: Effects of MHD and Radiation on Casson Cu─H2O Nanofluid\",\"authors\":\"Mohammed Azeez Alomari,&nbsp;Ahmed M. Hassan,&nbsp;Abdalrahman Alajmi,&nbsp;Ameer K. Salho,&nbsp;Abdellatif M. Sadeq,&nbsp;Faris Alqurashi,&nbsp;Mujtaba A. Flayyih\",\"doi\":\"10.1002/ese3.70069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study investigates double-diffusive transport and entropy generation in a wavy cylindrical enclosure containing Cu─H<sub>2</sub>O Casson nanofluid under magnetic field and thermal radiation effects. The governing equations were solved numerically using the finite element method with Galerkin formulation. The investigation covered parametric ranges including Rayleigh number (10³ ≤ <i>Ra</i> ≤ 10⁶), Hartmann number (0 ≤ <i>Ha</i> ≤ 40), magnetic field inclination (0° ≤ <i>γ</i> ≤ 90°), nanoparticle volume fraction (0 ≤ <i>φ</i> ≤ 0.15), Casson parameter (0.1 ≤ <i>η</i> ≤ 1), radiation parameter (0 ≤ <i>Rd</i> ≤ 4), thermal conductivity parameter (0 ≤ <i>λ</i> ≤ 4), Lewis number (0.5 ≤ <i>Le</i> ≤ 5), and buoyancy ratio (0.25 ≤ <i>Nz</i> ≤ 1.5). Results demonstrated that increasing <i>Ra</i> from 10³ to 10⁶ enhanced heat transfer by 60%, while increasing <i>Ha</i> to 40 reduced fluid circulation by 75%. The Casson parameter significantly influenced flow characteristics, with stream function values increasing by 75% as <i>η</i> approached Newtonian behavior. Thermal radiation parameters jointly moderated temperature gradients, with <i>Rd</i> causing a 15%–20% reduction in thermal stratification. The Lewis number and buoyancy ratio showed strong coupled effects, with the Sherwood number increasing by 150% as <i>Le</i> increased from 0.5 to 5. These findings have practical applications in advanced heat exchanger design, thermal energy storage systems, electronic cooling technologies, and biomedical devices, where controlled heat and mass transfer of non-Newtonian fluids is crucial.</p>\",\"PeriodicalId\":11673,\"journal\":{\"name\":\"Energy Science & Engineering\",\"volume\":\"13 6\",\"pages\":\"2810-2841\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.70069\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Science & Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ese3.70069\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ese3.70069","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了Cu─H2O卡森纳米流体在磁场和热辐射作用下的双扩散输运和熵的产生。采用伽辽金公式对控制方程进行了数值求解。研究的参数范围包括瑞利数(10³≤Ra≤10⁶)、哈mann数(0≤Ha≤40)、磁场倾角(0°≤γ≤90°)、纳米颗粒体积分数(0≤φ≤0.15)、Casson参数(0.1≤η≤1)、辐射参数(0≤Rd≤4)、导热系数参数(0≤λ≤4)、Lewis数(0.5≤Le≤5)和浮力比(0.25≤Nz≤1.5)。结果表明,当Ra从10³增加到10 26时,换热率提高了60%,而Ha增加到40时,流体循环率降低了75%。卡森参数显著影响流动特性,当η接近牛顿行为时,流函数值增加了75%。热辐射参数共同减缓了温度梯度,Rd使热分层减少了15%-20%。Lewis数与浮力比表现出较强的耦合效应,当Le从0.5增加到5时,Sherwood数增加了150%。这些发现在先进的热交换器设计、热能储存系统、电子冷却技术和生物医学设备中具有实际应用价值,在这些领域,控制非牛顿流体的传热和传质至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Analysis of Double-Diffusive Transport and Entropy Generation in a Wavy Cylindrical Enclosure With Inner Heated Core: Effects of MHD and Radiation on Casson Cu─H2O Nanofluid

Analysis of Double-Diffusive Transport and Entropy Generation in a Wavy Cylindrical Enclosure With Inner Heated Core: Effects of MHD and Radiation on Casson Cu─H2O Nanofluid

This study investigates double-diffusive transport and entropy generation in a wavy cylindrical enclosure containing Cu─H2O Casson nanofluid under magnetic field and thermal radiation effects. The governing equations were solved numerically using the finite element method with Galerkin formulation. The investigation covered parametric ranges including Rayleigh number (10³ ≤ Ra ≤ 10⁶), Hartmann number (0 ≤ Ha ≤ 40), magnetic field inclination (0° ≤ γ ≤ 90°), nanoparticle volume fraction (0 ≤ φ ≤ 0.15), Casson parameter (0.1 ≤ η ≤ 1), radiation parameter (0 ≤ Rd ≤ 4), thermal conductivity parameter (0 ≤ λ ≤ 4), Lewis number (0.5 ≤ Le ≤ 5), and buoyancy ratio (0.25 ≤ Nz ≤ 1.5). Results demonstrated that increasing Ra from 10³ to 10⁶ enhanced heat transfer by 60%, while increasing Ha to 40 reduced fluid circulation by 75%. The Casson parameter significantly influenced flow characteristics, with stream function values increasing by 75% as η approached Newtonian behavior. Thermal radiation parameters jointly moderated temperature gradients, with Rd causing a 15%–20% reduction in thermal stratification. The Lewis number and buoyancy ratio showed strong coupled effects, with the Sherwood number increasing by 150% as Le increased from 0.5 to 5. These findings have practical applications in advanced heat exchanger design, thermal energy storage systems, electronic cooling technologies, and biomedical devices, where controlled heat and mass transfer of non-Newtonian fluids is crucial.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Science & Engineering
Energy Science & Engineering Engineering-Safety, Risk, Reliability and Quality
CiteScore
6.80
自引率
7.90%
发文量
298
审稿时长
11 weeks
期刊介绍: Energy Science & Engineering is a peer reviewed, open access journal dedicated to fundamental and applied research on energy and supply and use. Published as a co-operative venture of Wiley and SCI (Society of Chemical Industry), the journal offers authors a fast route to publication and the ability to share their research with the widest possible audience of scientists, professionals and other interested people across the globe. Securing an affordable and low carbon energy supply is a critical challenge of the 21st century and the solutions will require collaboration between scientists and engineers worldwide. This new journal aims to facilitate collaboration and spark innovation in energy research and development. Due to the importance of this topic to society and economic development the journal will give priority to quality research papers that are accessible to a broad readership and discuss sustainable, state-of-the art approaches to shaping the future of energy. This multidisciplinary journal will appeal to all researchers and professionals working in any area of energy in academia, industry or government, including scientists, engineers, consultants, policy-makers, government officials, economists and corporate organisations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信