集成等离子体纳米加热器用于VO 2纳米复合材料的快速可调谐光驱动相变

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Shankar Acharya, Aaron Hutchins, Opeyemi Akanbi, Hong Tang, Yingjie Zhang, Hualiang Zhang, Wei Guo
{"title":"集成等离子体纳米加热器用于VO 2纳米复合材料的快速可调谐光驱动相变","authors":"Shankar Acharya,&nbsp;Aaron Hutchins,&nbsp;Opeyemi Akanbi,&nbsp;Hong Tang,&nbsp;Yingjie Zhang,&nbsp;Hualiang Zhang,&nbsp;Wei Guo","doi":"10.1002/admi.202500035","DOIUrl":null,"url":null,"abstract":"<p>The synthesis, and characterization of vanadium dioxide (VO₂) nanopowders mixed with gold nanoparticles (AuNP) are presented, enabling phase transition under visible light illumination at ambient temperature via AuNP plasmonic heating. The inclusion of AuNP enhances the thermal sensitivity of VO₂, allowing precise control of its metal-insulator transition (MIT). The MIT behavior is analyzed using Fourier transform infrared (FTIR) spectroscopy in the mid-infrared spectrum under varying external light power densities. VO₂ nanoparticles are synthesized with different AuNP particle number ratios, ranging from 1:5 to 1:20. The illumination power density threshold for MIT ranges from 3.7 to 7.9 mW mm<sup>−</sup><sup>2</sup>, depending on the particle ratio. Time-resolved analysis of VO<sub>2</sub> reveals a two-stage process, with rise times of 40 and 250 ms, and fall times of 12 and 140 ms, respectively. This rapid thermal response enables efficient phase modulation, achieving frequencies up to 1 kHz and a modulation depth of 10%.</p>","PeriodicalId":115,"journal":{"name":"Advanced Materials Interfaces","volume":"12 11","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202500035","citationCount":"0","resultStr":"{\"title\":\"Integration of Plasmonic Nanoheaters for Rapid and Tunable Light-Driven Phase Transitions in VO₂ Nanocomposites\",\"authors\":\"Shankar Acharya,&nbsp;Aaron Hutchins,&nbsp;Opeyemi Akanbi,&nbsp;Hong Tang,&nbsp;Yingjie Zhang,&nbsp;Hualiang Zhang,&nbsp;Wei Guo\",\"doi\":\"10.1002/admi.202500035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The synthesis, and characterization of vanadium dioxide (VO₂) nanopowders mixed with gold nanoparticles (AuNP) are presented, enabling phase transition under visible light illumination at ambient temperature via AuNP plasmonic heating. The inclusion of AuNP enhances the thermal sensitivity of VO₂, allowing precise control of its metal-insulator transition (MIT). The MIT behavior is analyzed using Fourier transform infrared (FTIR) spectroscopy in the mid-infrared spectrum under varying external light power densities. VO₂ nanoparticles are synthesized with different AuNP particle number ratios, ranging from 1:5 to 1:20. The illumination power density threshold for MIT ranges from 3.7 to 7.9 mW mm<sup>−</sup><sup>2</sup>, depending on the particle ratio. Time-resolved analysis of VO<sub>2</sub> reveals a two-stage process, with rise times of 40 and 250 ms, and fall times of 12 and 140 ms, respectively. This rapid thermal response enables efficient phase modulation, achieving frequencies up to 1 kHz and a modulation depth of 10%.</p>\",\"PeriodicalId\":115,\"journal\":{\"name\":\"Advanced Materials Interfaces\",\"volume\":\"12 11\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/admi.202500035\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/admi.202500035\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Interfaces","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admi.202500035","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

研究了二氧化钒(VO₂)纳米粉体与金纳米粒子(AuNP)混合的合成和表征,并通过AuNP等离子体加热在可见光照射下实现了相变。AuNP的加入增强了VO 2的热敏性,从而可以精确控制其金属-绝缘体转变(MIT)。在不同的外部光功率密度下,利用傅里叶变换红外光谱(FTIR)分析了中红外光谱中的MIT行为。采用不同的AuNP粒子数比(1:5 ~ 1:20)合成了VO 2纳米颗粒。MIT的照明功率密度阈值范围为3.7至7.9 mW mm−2,取决于粒子比。VO2的时间分辨分析揭示了一个两阶段的过程,上升时间为40和250 ms,下降时间分别为12和140 ms。这种快速的热响应实现了高效的相位调制,频率高达1khz,调制深度为10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integration of Plasmonic Nanoheaters for Rapid and Tunable Light-Driven Phase Transitions in VO₂ Nanocomposites

The synthesis, and characterization of vanadium dioxide (VO₂) nanopowders mixed with gold nanoparticles (AuNP) are presented, enabling phase transition under visible light illumination at ambient temperature via AuNP plasmonic heating. The inclusion of AuNP enhances the thermal sensitivity of VO₂, allowing precise control of its metal-insulator transition (MIT). The MIT behavior is analyzed using Fourier transform infrared (FTIR) spectroscopy in the mid-infrared spectrum under varying external light power densities. VO₂ nanoparticles are synthesized with different AuNP particle number ratios, ranging from 1:5 to 1:20. The illumination power density threshold for MIT ranges from 3.7 to 7.9 mW mm2, depending on the particle ratio. Time-resolved analysis of VO2 reveals a two-stage process, with rise times of 40 and 250 ms, and fall times of 12 and 140 ms, respectively. This rapid thermal response enables efficient phase modulation, achieving frequencies up to 1 kHz and a modulation depth of 10%.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials Interfaces
Advanced Materials Interfaces CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.40
自引率
5.60%
发文量
1174
审稿时长
1.3 months
期刊介绍: Advanced Materials Interfaces publishes top-level research on interface technologies and effects. Considering any interface formed between solids, liquids, and gases, the journal ensures an interdisciplinary blend of physics, chemistry, materials science, and life sciences. Advanced Materials Interfaces was launched in 2014 and received an Impact Factor of 4.834 in 2018. The scope of Advanced Materials Interfaces is dedicated to interfaces and surfaces that play an essential role in virtually all materials and devices. Physics, chemistry, materials science and life sciences blend to encourage new, cross-pollinating ideas, which will drive forward our understanding of the processes at the interface. Advanced Materials Interfaces covers all topics in interface-related research: Oil / water separation, Applications of nanostructured materials, 2D materials and heterostructures, Surfaces and interfaces in organic electronic devices, Catalysis and membranes, Self-assembly and nanopatterned surfaces, Composite and coating materials, Biointerfaces for technical and medical applications. Advanced Materials Interfaces provides a forum for topics on surface and interface science with a wide choice of formats: Reviews, Full Papers, and Communications, as well as Progress Reports and Research News.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信