{"title":"随机边缘颜色的彩虹堆叠","authors":"Noga Alon, Colin Defant, Noah Kravitz","doi":"10.1112/blms.70052","DOIUrl":null,"url":null,"abstract":"<p>A <i>rainbow stacking</i> of <span></span><math>\n <semantics>\n <mi>r</mi>\n <annotation>$r$</annotation>\n </semantics></math>-edge-colorings <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>χ</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <mtext>…</mtext>\n <mo>,</mo>\n <msub>\n <mi>χ</mi>\n <mi>m</mi>\n </msub>\n </mrow>\n <annotation>$\\chi _1, \\ldots , \\chi _m$</annotation>\n </semantics></math> of the complete graph on <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math> vertices is a way of superimposing <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>χ</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <mtext>…</mtext>\n <mo>,</mo>\n <msub>\n <mi>χ</mi>\n <mi>m</mi>\n </msub>\n </mrow>\n <annotation>$\\chi _1, \\ldots , \\chi _m$</annotation>\n </semantics></math> so that no edges of the same color are superimposed on each other. We determine a sharp threshold for <span></span><math>\n <semantics>\n <mi>r</mi>\n <annotation>$r$</annotation>\n </semantics></math> (as a function of <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$m$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math>) governing the existence and nonexistence of rainbow stackings of random <span></span><math>\n <semantics>\n <mi>r</mi>\n <annotation>$r$</annotation>\n </semantics></math>-edge-colorings <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>χ</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <mtext>…</mtext>\n <mo>,</mo>\n <msub>\n <mi>χ</mi>\n <mi>m</mi>\n </msub>\n </mrow>\n <annotation>$\\chi _1,\\ldots ,\\chi _m$</annotation>\n </semantics></math>.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 6","pages":"1656-1670"},"PeriodicalIF":0.9000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rainbow stackings of random edge-colorings\",\"authors\":\"Noga Alon, Colin Defant, Noah Kravitz\",\"doi\":\"10.1112/blms.70052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A <i>rainbow stacking</i> of <span></span><math>\\n <semantics>\\n <mi>r</mi>\\n <annotation>$r$</annotation>\\n </semantics></math>-edge-colorings <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>χ</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <mtext>…</mtext>\\n <mo>,</mo>\\n <msub>\\n <mi>χ</mi>\\n <mi>m</mi>\\n </msub>\\n </mrow>\\n <annotation>$\\\\chi _1, \\\\ldots , \\\\chi _m$</annotation>\\n </semantics></math> of the complete graph on <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math> vertices is a way of superimposing <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>χ</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <mtext>…</mtext>\\n <mo>,</mo>\\n <msub>\\n <mi>χ</mi>\\n <mi>m</mi>\\n </msub>\\n </mrow>\\n <annotation>$\\\\chi _1, \\\\ldots , \\\\chi _m$</annotation>\\n </semantics></math> so that no edges of the same color are superimposed on each other. We determine a sharp threshold for <span></span><math>\\n <semantics>\\n <mi>r</mi>\\n <annotation>$r$</annotation>\\n </semantics></math> (as a function of <span></span><math>\\n <semantics>\\n <mi>m</mi>\\n <annotation>$m$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mi>n</mi>\\n <annotation>$n$</annotation>\\n </semantics></math>) governing the existence and nonexistence of rainbow stackings of random <span></span><math>\\n <semantics>\\n <mi>r</mi>\\n <annotation>$r$</annotation>\\n </semantics></math>-edge-colorings <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>χ</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <mtext>…</mtext>\\n <mo>,</mo>\\n <msub>\\n <mi>χ</mi>\\n <mi>m</mi>\\n </msub>\\n </mrow>\\n <annotation>$\\\\chi _1,\\\\ldots ,\\\\chi _m$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 6\",\"pages\":\"1656-1670\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.70052\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.70052","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
A rainbow stacking of -edge-colorings of the complete graph on vertices is a way of superimposing so that no edges of the same color are superimposed on each other. We determine a sharp threshold for (as a function of and ) governing the existence and nonexistence of rainbow stackings of random -edge-colorings .