昆虫的药物吞噬:植物特殊代谢物非营养性利用的生态学和进化观点

IF 1.4 3区 农林科学 Q2 ENTOMOLOGY
Pragya Singh, Caroline Müller
{"title":"昆虫的药物吞噬:植物特殊代谢物非营养性利用的生态学和进化观点","authors":"Pragya Singh,&nbsp;Caroline Müller","doi":"10.1111/eea.13586","DOIUrl":null,"url":null,"abstract":"<p>Herbivorous insects can interact with plants in ways that go beyond nutrition, with plant specialized (secondary) metabolites (PSMs) mediating complex non-nutritional relationships. While PSMs often function as anti-herbivore defenses, many insects have evolved strategies to counteract and even exploit these compounds, using them for purposes such as their own defense against antagonists, enhanced mating success, or self-medication. This review explores pharmacophagy, where insects actively seek and acquire specific PSMs from both food and non-food plants for benefits unrelated to nutrition, across different insect orders such as Orthoptera, Lepidoptera, Hymenoptera, Coleoptera, Diptera, and Neuroptera. Key examples are provided for species taking up PSMs of different compound classes, including pyrrolizidine alkaloids, cardiac glycosides, neo-clerodane diterpenoids, cucurbitacins, raspberry ketone, methyl eugenol, and other metabolites such as ethanol or resin. The insect species demonstrate unique adaptive uses of these non-nutritional plant chemicals. We discuss the intra- and intergenerational transfer of pharmacophagously acquired PSMs among conspecifics and the methods for identifying and testing pharmacophagy, emphasizing the importance of interdisciplinary approaches that combine field observations, behavioral studies, and chemical analyses. The evolutionary pathways leading to pharmacophagy are considered, highlighting selective pressures such as predation, parasitism, and sexual selection. We also address the costs associated with pharmacophagy, including energetic demands and potential toxicity. Extending the discussion to non-insect taxa suggests that pharmacophagy may be a broader ecological phenomenon. By establishing a comprehensive framework for understanding pharmacophagy, we aim to stimulate further research into this intriguing aspect of plant–insect interactions and highlight its potential applications in pest management, conservation, and human health.</p>","PeriodicalId":11741,"journal":{"name":"Entomologia Experimentalis et Applicata","volume":"173 7","pages":"661-673"},"PeriodicalIF":1.4000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/eea.13586","citationCount":"0","resultStr":"{\"title\":\"Pharmacophagy in insects: Ecological and evolutionary perspectives on the non-nutritional use of plant specialized metabolites\",\"authors\":\"Pragya Singh,&nbsp;Caroline Müller\",\"doi\":\"10.1111/eea.13586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Herbivorous insects can interact with plants in ways that go beyond nutrition, with plant specialized (secondary) metabolites (PSMs) mediating complex non-nutritional relationships. While PSMs often function as anti-herbivore defenses, many insects have evolved strategies to counteract and even exploit these compounds, using them for purposes such as their own defense against antagonists, enhanced mating success, or self-medication. This review explores pharmacophagy, where insects actively seek and acquire specific PSMs from both food and non-food plants for benefits unrelated to nutrition, across different insect orders such as Orthoptera, Lepidoptera, Hymenoptera, Coleoptera, Diptera, and Neuroptera. Key examples are provided for species taking up PSMs of different compound classes, including pyrrolizidine alkaloids, cardiac glycosides, neo-clerodane diterpenoids, cucurbitacins, raspberry ketone, methyl eugenol, and other metabolites such as ethanol or resin. The insect species demonstrate unique adaptive uses of these non-nutritional plant chemicals. We discuss the intra- and intergenerational transfer of pharmacophagously acquired PSMs among conspecifics and the methods for identifying and testing pharmacophagy, emphasizing the importance of interdisciplinary approaches that combine field observations, behavioral studies, and chemical analyses. The evolutionary pathways leading to pharmacophagy are considered, highlighting selective pressures such as predation, parasitism, and sexual selection. We also address the costs associated with pharmacophagy, including energetic demands and potential toxicity. Extending the discussion to non-insect taxa suggests that pharmacophagy may be a broader ecological phenomenon. By establishing a comprehensive framework for understanding pharmacophagy, we aim to stimulate further research into this intriguing aspect of plant–insect interactions and highlight its potential applications in pest management, conservation, and human health.</p>\",\"PeriodicalId\":11741,\"journal\":{\"name\":\"Entomologia Experimentalis et Applicata\",\"volume\":\"173 7\",\"pages\":\"661-673\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/eea.13586\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entomologia Experimentalis et Applicata\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/eea.13586\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entomologia Experimentalis et Applicata","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/eea.13586","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

草食性昆虫可以与植物以超越营养的方式相互作用,植物专门(次级)代谢物(psm)介导复杂的非营养关系。虽然psm通常具有抗食草动物的功能,但许多昆虫已经进化出了抵消甚至利用这些化合物的策略,将它们用于防御拮抗剂、提高交配成功率或自我治疗等目的。本文综述了昆虫在直翅目、鳞翅目、膜翅目、鞘翅目、双翅目和神经翅目等不同昆虫目中主动从食物和非食物植物中寻找和获取特定psm的食药行为。提供了吸收不同化合物类别pms的物种的关键例子,包括吡咯利西啶生物碱、心苷、新氯烷二萜、瓜素、覆盆子酮、甲基丁香酚和其他代谢物,如乙醇或树脂。昆虫对这些非营养性植物化学物质表现出独特的适应性利用。我们讨论了同种生物中药物吞噬获得性psm的代际和代际转移,以及识别和测试药物吞噬的方法,强调了结合现场观察、行为研究和化学分析的跨学科方法的重要性。考虑了导致药物吞噬的进化途径,强调了选择压力,如捕食,寄生和性选择。我们还讨论了与药物吞噬相关的成本,包括能量需求和潜在毒性。将讨论扩展到非昆虫类群表明,药物吞噬可能是一种更广泛的生态现象。通过建立理解药物吞噬的综合框架,我们的目标是激发对植物-昆虫相互作用这一有趣方面的进一步研究,并强调其在害虫管理,保护和人类健康方面的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pharmacophagy in insects: Ecological and evolutionary perspectives on the non-nutritional use of plant specialized metabolites

Herbivorous insects can interact with plants in ways that go beyond nutrition, with plant specialized (secondary) metabolites (PSMs) mediating complex non-nutritional relationships. While PSMs often function as anti-herbivore defenses, many insects have evolved strategies to counteract and even exploit these compounds, using them for purposes such as their own defense against antagonists, enhanced mating success, or self-medication. This review explores pharmacophagy, where insects actively seek and acquire specific PSMs from both food and non-food plants for benefits unrelated to nutrition, across different insect orders such as Orthoptera, Lepidoptera, Hymenoptera, Coleoptera, Diptera, and Neuroptera. Key examples are provided for species taking up PSMs of different compound classes, including pyrrolizidine alkaloids, cardiac glycosides, neo-clerodane diterpenoids, cucurbitacins, raspberry ketone, methyl eugenol, and other metabolites such as ethanol or resin. The insect species demonstrate unique adaptive uses of these non-nutritional plant chemicals. We discuss the intra- and intergenerational transfer of pharmacophagously acquired PSMs among conspecifics and the methods for identifying and testing pharmacophagy, emphasizing the importance of interdisciplinary approaches that combine field observations, behavioral studies, and chemical analyses. The evolutionary pathways leading to pharmacophagy are considered, highlighting selective pressures such as predation, parasitism, and sexual selection. We also address the costs associated with pharmacophagy, including energetic demands and potential toxicity. Extending the discussion to non-insect taxa suggests that pharmacophagy may be a broader ecological phenomenon. By establishing a comprehensive framework for understanding pharmacophagy, we aim to stimulate further research into this intriguing aspect of plant–insect interactions and highlight its potential applications in pest management, conservation, and human health.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
5.30%
发文量
138
审稿时长
4-8 weeks
期刊介绍: Entomologia Experimentalis et Applicata publishes top quality original research papers in the fields of experimental biology and ecology of insects and other terrestrial arthropods, with both pure and applied scopes. Mini-reviews, technical notes and media reviews are also published. Although the scope of the journal covers the entire scientific field of entomology, it has established itself as the preferred medium for the communication of results in the areas of the physiological, ecological, and morphological inter-relations between phytophagous arthropods and their food plants, their parasitoids, predators, and pathogens. Examples of specific areas that are covered frequently are: host-plant selection mechanisms chemical and sensory ecology and infochemicals parasitoid-host interactions behavioural ecology biosystematics (co-)evolution migration and dispersal population modelling sampling strategies developmental and behavioural responses to photoperiod and temperature nutrition natural and transgenic plant resistance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信