{"title":"赋范空间的离散子群是自由的","authors":"Tomasz Kania, Ziemowit Kostana","doi":"10.1112/blms.70051","DOIUrl":null,"url":null,"abstract":"<p>Ancel, Dobrowolski and Grabowski (<i>Studia Math</i>. 109 (1994): 277–290) proved that every countable discrete subgroup of the additive group of a normed space is free Abelian, hence isomorphic to the direct sum of a certain number of copies of the additive group of the integers. In the present paper, we take a set-theoretic approach based on the theory of elementary submodels and the Singular Compactness Theorem to remove the cardinality constraint from their result and prove that indeed every discrete subgroup of the additive group of a normed space is free Abelian.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 6","pages":"1650-1655"},"PeriodicalIF":0.9000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70051","citationCount":"0","resultStr":"{\"title\":\"Discrete subgroups of normed spaces are free\",\"authors\":\"Tomasz Kania, Ziemowit Kostana\",\"doi\":\"10.1112/blms.70051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ancel, Dobrowolski and Grabowski (<i>Studia Math</i>. 109 (1994): 277–290) proved that every countable discrete subgroup of the additive group of a normed space is free Abelian, hence isomorphic to the direct sum of a certain number of copies of the additive group of the integers. In the present paper, we take a set-theoretic approach based on the theory of elementary submodels and the Singular Compactness Theorem to remove the cardinality constraint from their result and prove that indeed every discrete subgroup of the additive group of a normed space is free Abelian.</p>\",\"PeriodicalId\":55298,\"journal\":{\"name\":\"Bulletin of the London Mathematical Society\",\"volume\":\"57 6\",\"pages\":\"1650-1655\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70051\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/blms.70051\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.70051","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Ancel, Dobrowolski and Grabowski (Studia Math. 109 (1994): 277–290) proved that every countable discrete subgroup of the additive group of a normed space is free Abelian, hence isomorphic to the direct sum of a certain number of copies of the additive group of the integers. In the present paper, we take a set-theoretic approach based on the theory of elementary submodels and the Singular Compactness Theorem to remove the cardinality constraint from their result and prove that indeed every discrete subgroup of the additive group of a normed space is free Abelian.