在次周时间尺度上使用高时间协调Landsat和Sentinel (HLS)数据绘制美国相邻水库水面面积

IF 4.6 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Anshul Yadav, Shuai Zhang, Bingjie Zhao, George H. Allen, Christopher Pearson, Justin Huntington, Kathleen Holman, Katie McQuillan, Huilin Gao
{"title":"在次周时间尺度上使用高时间协调Landsat和Sentinel (HLS)数据绘制美国相邻水库水面面积","authors":"Anshul Yadav,&nbsp;Shuai Zhang,&nbsp;Bingjie Zhao,&nbsp;George H. Allen,&nbsp;Christopher Pearson,&nbsp;Justin Huntington,&nbsp;Kathleen Holman,&nbsp;Katie McQuillan,&nbsp;Huilin Gao","doi":"10.1029/2024GL114046","DOIUrl":null,"url":null,"abstract":"<p>Traditional remote sensing techniques are limited in providing the necessary spatial and temporal resolution to capture the reservoir dynamics accurately. In this study, we introduce a novel algorithm to generate sub-weekly reservoir surface area time series using the Harmonized Landsat and Sentinel-2 data set across the Continental United States. Our approach addresses common challenges (e.g., cloud contaminations) by integrating a Random Forest classification model with a refined image enhancement algorithm. Validation results against in situ data from 240 reservoirs indicate a high coefficient of determination (<i>R</i><sup>2</sup> = 0.98) and relatively low bias (&lt;10%), therefore demonstrating its robustness across reservoirs of varying sizes and climatic conditions. This method not only captures sub-weekly surface area changes, but also provides richer temporal information compared to existing monthly data sets. This enhanced temporal resolution is useful for applications such as reservoir management, hydropower generation, and our overall understanding the transient nature of reservoir dynamics.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"52 11","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL114046","citationCount":"0","resultStr":"{\"title\":\"Mapping Reservoir Water Surface Area in the Contiguous United States Using the High-Temporal Harmonized Landsat and Sentinel (HLS) Data at a Sub-Weekly Time Scale\",\"authors\":\"Anshul Yadav,&nbsp;Shuai Zhang,&nbsp;Bingjie Zhao,&nbsp;George H. Allen,&nbsp;Christopher Pearson,&nbsp;Justin Huntington,&nbsp;Kathleen Holman,&nbsp;Katie McQuillan,&nbsp;Huilin Gao\",\"doi\":\"10.1029/2024GL114046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Traditional remote sensing techniques are limited in providing the necessary spatial and temporal resolution to capture the reservoir dynamics accurately. In this study, we introduce a novel algorithm to generate sub-weekly reservoir surface area time series using the Harmonized Landsat and Sentinel-2 data set across the Continental United States. Our approach addresses common challenges (e.g., cloud contaminations) by integrating a Random Forest classification model with a refined image enhancement algorithm. Validation results against in situ data from 240 reservoirs indicate a high coefficient of determination (<i>R</i><sup>2</sup> = 0.98) and relatively low bias (&lt;10%), therefore demonstrating its robustness across reservoirs of varying sizes and climatic conditions. This method not only captures sub-weekly surface area changes, but also provides richer temporal information compared to existing monthly data sets. This enhanced temporal resolution is useful for applications such as reservoir management, hydropower generation, and our overall understanding the transient nature of reservoir dynamics.</p>\",\"PeriodicalId\":12523,\"journal\":{\"name\":\"Geophysical Research Letters\",\"volume\":\"52 11\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL114046\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Research Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024GL114046\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024GL114046","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

传统的遥感技术在提供必要的空间和时间分辨率以准确捕捉储层动态方面受到限制。在这项研究中,我们引入了一种新的算法,利用美国大陆的Harmonized Landsat和Sentinel-2数据集生成亚周水库表面积时间序列。我们的方法通过集成随机森林分类模型和精细图像增强算法来解决常见的挑战(例如,云污染)。针对240个油藏现场数据的验证结果表明,该方法具有较高的决定系数(R2 = 0.98)和相对较低的偏差(<10%),因此证明了其在不同规模和气候条件下的稳健性。该方法不仅捕获了次周的地表面积变化,而且与现有的月度数据集相比,提供了更丰富的时间信息。这种增强的时间分辨率对水库管理、水力发电和我们对水库动态的瞬态性质的全面理解等应用非常有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Mapping Reservoir Water Surface Area in the Contiguous United States Using the High-Temporal Harmonized Landsat and Sentinel (HLS) Data at a Sub-Weekly Time Scale

Mapping Reservoir Water Surface Area in the Contiguous United States Using the High-Temporal Harmonized Landsat and Sentinel (HLS) Data at a Sub-Weekly Time Scale

Mapping Reservoir Water Surface Area in the Contiguous United States Using the High-Temporal Harmonized Landsat and Sentinel (HLS) Data at a Sub-Weekly Time Scale

Mapping Reservoir Water Surface Area in the Contiguous United States Using the High-Temporal Harmonized Landsat and Sentinel (HLS) Data at a Sub-Weekly Time Scale

Mapping Reservoir Water Surface Area in the Contiguous United States Using the High-Temporal Harmonized Landsat and Sentinel (HLS) Data at a Sub-Weekly Time Scale

Traditional remote sensing techniques are limited in providing the necessary spatial and temporal resolution to capture the reservoir dynamics accurately. In this study, we introduce a novel algorithm to generate sub-weekly reservoir surface area time series using the Harmonized Landsat and Sentinel-2 data set across the Continental United States. Our approach addresses common challenges (e.g., cloud contaminations) by integrating a Random Forest classification model with a refined image enhancement algorithm. Validation results against in situ data from 240 reservoirs indicate a high coefficient of determination (R2 = 0.98) and relatively low bias (<10%), therefore demonstrating its robustness across reservoirs of varying sizes and climatic conditions. This method not only captures sub-weekly surface area changes, but also provides richer temporal information compared to existing monthly data sets. This enhanced temporal resolution is useful for applications such as reservoir management, hydropower generation, and our overall understanding the transient nature of reservoir dynamics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysical Research Letters
Geophysical Research Letters 地学-地球科学综合
CiteScore
9.00
自引率
9.60%
发文量
1588
审稿时长
2.2 months
期刊介绍: Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信