Jordan-Block型抛物型系统的拟线性微分约束

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
Alessandra Rizzo, Pierandrea Vergallo
{"title":"Jordan-Block型抛物型系统的拟线性微分约束","authors":"Alessandra Rizzo,&nbsp;Pierandrea Vergallo","doi":"10.1111/sapm.70072","DOIUrl":null,"url":null,"abstract":"<p>We prove that linear degeneracy is a necessary conditions for systems in Jordan-block form to admit a compatible quasilinear differential constraint. Such condition is also sufficient for <span></span><math>\n <semantics>\n <mrow>\n <mn>2</mn>\n <mo>×</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$2\\times 2$</annotation>\n </semantics></math> systems and turns out to be equivalent to the Hamiltonian property. Some explicit solutions of parabolic systems are herein given: two principal hierarchies arising from the associativity theory and the delta-functional reduction of the El's equation in the hard rod case are integrated.</p>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"154 6","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/sapm.70072","citationCount":"0","resultStr":"{\"title\":\"Quasilinear Differential Constraints for Parabolic Systems of Jordan-Block Type\",\"authors\":\"Alessandra Rizzo,&nbsp;Pierandrea Vergallo\",\"doi\":\"10.1111/sapm.70072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove that linear degeneracy is a necessary conditions for systems in Jordan-block form to admit a compatible quasilinear differential constraint. Such condition is also sufficient for <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>2</mn>\\n <mo>×</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$2\\\\times 2$</annotation>\\n </semantics></math> systems and turns out to be equivalent to the Hamiltonian property. Some explicit solutions of parabolic systems are herein given: two principal hierarchies arising from the associativity theory and the delta-functional reduction of the El's equation in the hard rod case are integrated.</p>\",\"PeriodicalId\":51174,\"journal\":{\"name\":\"Studies in Applied Mathematics\",\"volume\":\"154 6\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/sapm.70072\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/sapm.70072\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.70072","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

证明了线性退化性是Jordan-block型系统存在相容拟线性微分约束的必要条件。这个条件对于2 × 2$ 2\ × 2$系统也是充分的,并且与哈密顿性质等价。本文给出了抛物型方程组的若干显式解,并综合了由结合律理论产生的两个主要层次和硬杆情况下El’s方程的三角泛函化简。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quasilinear Differential Constraints for Parabolic Systems of Jordan-Block Type

We prove that linear degeneracy is a necessary conditions for systems in Jordan-block form to admit a compatible quasilinear differential constraint. Such condition is also sufficient for 2 × 2 $2\times 2$ systems and turns out to be equivalent to the Hamiltonian property. Some explicit solutions of parabolic systems are herein given: two principal hierarchies arising from the associativity theory and the delta-functional reduction of the El's equation in the hard rod case are integrated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Studies in Applied Mathematics
Studies in Applied Mathematics 数学-应用数学
CiteScore
4.30
自引率
3.70%
发文量
66
审稿时长
>12 weeks
期刊介绍: Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信