利用非并发控制的自适应平台试验中调整时间趋势的统计建模

IF 1.3 3区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Pavla Krotka, Martin Posch, Mohamed Gewily, Günter Höglinger, Marta Bofill Roig
{"title":"利用非并发控制的自适应平台试验中调整时间趋势的统计建模","authors":"Pavla Krotka,&nbsp;Martin Posch,&nbsp;Mohamed Gewily,&nbsp;Günter Höglinger,&nbsp;Marta Bofill Roig","doi":"10.1002/bimj.70059","DOIUrl":null,"url":null,"abstract":"<p>Utilizing non-concurrent control (NCC) data in the analysis of late-entering arms in platform trials has recently received considerable attention. While incorporating NCC can lead to increased power and lower sample sizes, it might introduce bias to the effect estimators if temporal drifts are present. Aiming to mitigate this potential bias, we propose various frequentist model-based approaches that leverage the NCC, while adjusting for time. One of the currently available models incorporates time as a categorical fixed effect, separating the trial duration into periods, defined as time intervals bounded by any arm entering or leaving the platform. In this work, we propose two extensions of this model. First, we consider an alternative definition of time by dividing the trial into fixed-length calendar time intervals. Second, we propose alternative model-based time adjustments. Specifically, we investigate adjusting for random effects and employing splines to model time with a polynomial function. We evaluate the performance of the proposed approaches in a simulation study and illustrate their use through a case study. We show that adjusting for time via a spline function controls the type I error in trials with a sufficiently smooth time trend pattern and may lead to power gains compared to the standard fixed effect model. However, the fixed effect model with period adjustment is the most robust model for arbitrary time trends, provided that the trend is equal across all arms. Especially, in trials with sudden changes in the time trend, the period-adjustment model is preferred if NCCs are included.</p>","PeriodicalId":55360,"journal":{"name":"Biometrical Journal","volume":"67 3","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.70059","citationCount":"0","resultStr":"{\"title\":\"Statistical Modeling to Adjust for Time Trends in Adaptive Platform Trials Utilizing Non-Concurrent Controls\",\"authors\":\"Pavla Krotka,&nbsp;Martin Posch,&nbsp;Mohamed Gewily,&nbsp;Günter Höglinger,&nbsp;Marta Bofill Roig\",\"doi\":\"10.1002/bimj.70059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Utilizing non-concurrent control (NCC) data in the analysis of late-entering arms in platform trials has recently received considerable attention. While incorporating NCC can lead to increased power and lower sample sizes, it might introduce bias to the effect estimators if temporal drifts are present. Aiming to mitigate this potential bias, we propose various frequentist model-based approaches that leverage the NCC, while adjusting for time. One of the currently available models incorporates time as a categorical fixed effect, separating the trial duration into periods, defined as time intervals bounded by any arm entering or leaving the platform. In this work, we propose two extensions of this model. First, we consider an alternative definition of time by dividing the trial into fixed-length calendar time intervals. Second, we propose alternative model-based time adjustments. Specifically, we investigate adjusting for random effects and employing splines to model time with a polynomial function. We evaluate the performance of the proposed approaches in a simulation study and illustrate their use through a case study. We show that adjusting for time via a spline function controls the type I error in trials with a sufficiently smooth time trend pattern and may lead to power gains compared to the standard fixed effect model. However, the fixed effect model with period adjustment is the most robust model for arbitrary time trends, provided that the trend is equal across all arms. Especially, in trials with sudden changes in the time trend, the period-adjustment model is preferred if NCCs are included.</p>\",\"PeriodicalId\":55360,\"journal\":{\"name\":\"Biometrical Journal\",\"volume\":\"67 3\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.70059\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrical Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bimj.70059\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrical Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bimj.70059","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

利用非并发控制(NCC)数据分析平台试验中进入后期的分支最近受到了相当大的关注。虽然合并NCC可能导致功率增加和样本量减少,但如果存在时间漂移,它可能会给效果估计器引入偏差。为了减轻这种潜在的偏见,我们提出了各种基于频率模型的方法,利用NCC,同时根据时间进行调整。目前可用的一种模型将时间作为分类固定效应,将试验持续时间划分为几个时间段,定义为以任何进入或离开平台的手臂为界的时间间隔。在这项工作中,我们提出了该模型的两个扩展。首先,我们通过将试验划分为固定长度的日历时间间隔来考虑时间的另一种定义。其次,我们提出了基于模型的时间调整方案。具体来说,我们研究了调整随机效应和使用样条曲线用多项式函数来模拟时间。我们在模拟研究中评估了所提出方法的性能,并通过案例研究说明了它们的使用。我们表明,通过样条函数对时间进行调整可以控制具有足够平滑的时间趋势模式的试验中的I型误差,并且可能导致与标准固定效应模型相比的功率增益。然而,具有周期调整的固定效应模型对于任意时间趋势是最稳健的模型,前提是所有臂的趋势是相等的。特别是在时间趋势突变的试验中,如果包含ncc,则首选周期调整模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical Modeling to Adjust for Time Trends in Adaptive Platform Trials Utilizing Non-Concurrent Controls

Utilizing non-concurrent control (NCC) data in the analysis of late-entering arms in platform trials has recently received considerable attention. While incorporating NCC can lead to increased power and lower sample sizes, it might introduce bias to the effect estimators if temporal drifts are present. Aiming to mitigate this potential bias, we propose various frequentist model-based approaches that leverage the NCC, while adjusting for time. One of the currently available models incorporates time as a categorical fixed effect, separating the trial duration into periods, defined as time intervals bounded by any arm entering or leaving the platform. In this work, we propose two extensions of this model. First, we consider an alternative definition of time by dividing the trial into fixed-length calendar time intervals. Second, we propose alternative model-based time adjustments. Specifically, we investigate adjusting for random effects and employing splines to model time with a polynomial function. We evaluate the performance of the proposed approaches in a simulation study and illustrate their use through a case study. We show that adjusting for time via a spline function controls the type I error in trials with a sufficiently smooth time trend pattern and may lead to power gains compared to the standard fixed effect model. However, the fixed effect model with period adjustment is the most robust model for arbitrary time trends, provided that the trend is equal across all arms. Especially, in trials with sudden changes in the time trend, the period-adjustment model is preferred if NCCs are included.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biometrical Journal
Biometrical Journal 生物-数学与计算生物学
CiteScore
3.20
自引率
5.90%
发文量
119
审稿时长
6-12 weeks
期刊介绍: Biometrical Journal publishes papers on statistical methods and their applications in life sciences including medicine, environmental sciences and agriculture. Methodological developments should be motivated by an interesting and relevant problem from these areas. Ideally the manuscript should include a description of the problem and a section detailing the application of the new methodology to the problem. Case studies, review articles and letters to the editors are also welcome. Papers containing only extensive mathematical theory are not suitable for publication in Biometrical Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信