{"title":"基于支点开关的工程耐酸模块方法提高工业大肠杆菌菌株在低pH下的生产稳健性","authors":"Xin Zhang, Xiaofang Yan, Peng Liu, Haozheng Huang, Zhanglin Lin, Xiaofeng Yang","doi":"10.1111/1751-7915.70175","DOIUrl":null,"url":null,"abstract":"<p>Enhancing acid tolerance of industrial microorganisms is critical for improving fermentation efficiency and sustainability. This study presents a synthetic biology approach that employs toehold switch-based acid-tolerance modules to engineer acid-tolerant strains. This toehold switch-based approach enables the construction of modules consisting of a trigger block and a switch block, generating a synthetic module library of ~10<sup>5</sup> constructs that integrate four acid-responsive promoters and 18 acid-resistance genes. Through stepwise evaluation, we identified two best synthetic modules, RE-6 and RE-38, which enabled an industrial lysine-producing strain to maintain lysine titers and yields at pH 5.5 comparable to those observed in the parent strain at pH 6.8. Transcriptional analyses revealed that upregulation of key acid-resistance genes involved in protein quality control, reactive oxygen species scavenging and redox homeostasis contributed to the enhanced acid tolerance of the engineered strains. Our study offers a powerful toehold switch-based approach for constructing synthetic modules of interest, particularly for enhancing the robustness and productivity of industrial strains.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"18 6","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70175","citationCount":"0","resultStr":"{\"title\":\"Toehold Switch-Based Approach for Engineering Acid-Tolerance Modules to Enhance Production Robustness of Industrial E. coli Strains at Low pH\",\"authors\":\"Xin Zhang, Xiaofang Yan, Peng Liu, Haozheng Huang, Zhanglin Lin, Xiaofeng Yang\",\"doi\":\"10.1111/1751-7915.70175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Enhancing acid tolerance of industrial microorganisms is critical for improving fermentation efficiency and sustainability. This study presents a synthetic biology approach that employs toehold switch-based acid-tolerance modules to engineer acid-tolerant strains. This toehold switch-based approach enables the construction of modules consisting of a trigger block and a switch block, generating a synthetic module library of ~10<sup>5</sup> constructs that integrate four acid-responsive promoters and 18 acid-resistance genes. Through stepwise evaluation, we identified two best synthetic modules, RE-6 and RE-38, which enabled an industrial lysine-producing strain to maintain lysine titers and yields at pH 5.5 comparable to those observed in the parent strain at pH 6.8. Transcriptional analyses revealed that upregulation of key acid-resistance genes involved in protein quality control, reactive oxygen species scavenging and redox homeostasis contributed to the enhanced acid tolerance of the engineered strains. Our study offers a powerful toehold switch-based approach for constructing synthetic modules of interest, particularly for enhancing the robustness and productivity of industrial strains.</p>\",\"PeriodicalId\":209,\"journal\":{\"name\":\"Microbial Biotechnology\",\"volume\":\"18 6\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70175\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.70175\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.70175","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Toehold Switch-Based Approach for Engineering Acid-Tolerance Modules to Enhance Production Robustness of Industrial E. coli Strains at Low pH
Enhancing acid tolerance of industrial microorganisms is critical for improving fermentation efficiency and sustainability. This study presents a synthetic biology approach that employs toehold switch-based acid-tolerance modules to engineer acid-tolerant strains. This toehold switch-based approach enables the construction of modules consisting of a trigger block and a switch block, generating a synthetic module library of ~105 constructs that integrate four acid-responsive promoters and 18 acid-resistance genes. Through stepwise evaluation, we identified two best synthetic modules, RE-6 and RE-38, which enabled an industrial lysine-producing strain to maintain lysine titers and yields at pH 5.5 comparable to those observed in the parent strain at pH 6.8. Transcriptional analyses revealed that upregulation of key acid-resistance genes involved in protein quality control, reactive oxygen species scavenging and redox homeostasis contributed to the enhanced acid tolerance of the engineered strains. Our study offers a powerful toehold switch-based approach for constructing synthetic modules of interest, particularly for enhancing the robustness and productivity of industrial strains.
期刊介绍:
Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes