NPC1L1通过激活C/EBPα/ cyp27a1 /27-羟基胆固醇轴驱动骨质疏松:骨质流失的新治疗靶点

IF 2 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Bohao Li, Wuling Zhou, Yueming Yu, Boyu Chen, Zhicheng Lv, Jiarui Zhang, Tieqi Zhang, Shiwei Sun, Lei Zhou, Minghai Wang
{"title":"NPC1L1通过激活C/EBPα/ cyp27a1 /27-羟基胆固醇轴驱动骨质疏松:骨质流失的新治疗靶点","authors":"Bohao Li,&nbsp;Wuling Zhou,&nbsp;Yueming Yu,&nbsp;Boyu Chen,&nbsp;Zhicheng Lv,&nbsp;Jiarui Zhang,&nbsp;Tieqi Zhang,&nbsp;Shiwei Sun,&nbsp;Lei Zhou,&nbsp;Minghai Wang","doi":"10.1096/fba.2025-00044","DOIUrl":null,"url":null,"abstract":"<p>This study investigated how NPC1L1, a cholesterol transporter, regulates osteogenic differentiation through cholesterol metabolism independently of its transport function. We also explored the role of NPC1L1 in osteoporosis (OP), focusing on the downstream C/EBPα/Cyp27a1/27-hydroxycholesterol (27-OHC) axis. High-throughput RNA sequencing and bioinformatics analysis identified NPC1L1 as a key regulator of osteogenesis. Osteogenic differentiation assays, Alizarin Red S and ALP staining, western blot analysis, and qRT-PCR were performed using osteoblast cell lines (C3H10 and C2C12). In addition, an ovariectomy (OVX)-induced mouse model of OP was established to validate the in vivo effects. ELISAs, chromatin immunoprecipitation (ChIP–qPCR), and rescue experiments were conducted to verify the functional interactions among NPC1L1, Cyp27a1, 27-OHC production, and the transcription factor C/EBPα. NPC1L1 expression was downregulated during osteogenesis, and its knockdown significantly enhanced osteogenic differentiation, proliferation, and migration. At the molecular level, NPC1L1 promoted cholesterol metabolism independently of its transport function, resulting in elevated 27-OHC levels through increased expression of Cyp27a1. Elevated 27-OHC suppressed osteogenesis through the induction of oxidative stress and the downregulation of osteogenic biomarkers (ALP, OPN, OSX, and OCN). In OVX mice, NPC1L1 knockdown significantly reversed osteoporosis-related bone loss, as evidenced by improved trabecular parameters (BV/TV%, Tb.Th, Tb.N). Furthermore, we identified C/EBPα as a transcriptional activator of Cyp27a1, which mediates the regulatory effects of NPC1L1 on 27-OHC production. NPC1L1 inhibits osteogenesis and contributes to OP by promoting the Cyp27a1-dependent synthesis of 27-OHC through the transcription factor C/EBPα. Targeted modulation of the NPC1L1-C/EBPα-Cyp27a1-27-OHC axis could provide novel therapeutic strategies for OP.</p>","PeriodicalId":12093,"journal":{"name":"FASEB bioAdvances","volume":"7 6","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1096/fba.2025-00044","citationCount":"0","resultStr":"{\"title\":\"NPC1L1 Drives Osteoporosis by Activating the C/EBPα/Cyp27a1/27-Hydroxycholesterol Axis: A Novel Therapeutic Target for Bone Loss\",\"authors\":\"Bohao Li,&nbsp;Wuling Zhou,&nbsp;Yueming Yu,&nbsp;Boyu Chen,&nbsp;Zhicheng Lv,&nbsp;Jiarui Zhang,&nbsp;Tieqi Zhang,&nbsp;Shiwei Sun,&nbsp;Lei Zhou,&nbsp;Minghai Wang\",\"doi\":\"10.1096/fba.2025-00044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study investigated how NPC1L1, a cholesterol transporter, regulates osteogenic differentiation through cholesterol metabolism independently of its transport function. We also explored the role of NPC1L1 in osteoporosis (OP), focusing on the downstream C/EBPα/Cyp27a1/27-hydroxycholesterol (27-OHC) axis. High-throughput RNA sequencing and bioinformatics analysis identified NPC1L1 as a key regulator of osteogenesis. Osteogenic differentiation assays, Alizarin Red S and ALP staining, western blot analysis, and qRT-PCR were performed using osteoblast cell lines (C3H10 and C2C12). In addition, an ovariectomy (OVX)-induced mouse model of OP was established to validate the in vivo effects. ELISAs, chromatin immunoprecipitation (ChIP–qPCR), and rescue experiments were conducted to verify the functional interactions among NPC1L1, Cyp27a1, 27-OHC production, and the transcription factor C/EBPα. NPC1L1 expression was downregulated during osteogenesis, and its knockdown significantly enhanced osteogenic differentiation, proliferation, and migration. At the molecular level, NPC1L1 promoted cholesterol metabolism independently of its transport function, resulting in elevated 27-OHC levels through increased expression of Cyp27a1. Elevated 27-OHC suppressed osteogenesis through the induction of oxidative stress and the downregulation of osteogenic biomarkers (ALP, OPN, OSX, and OCN). In OVX mice, NPC1L1 knockdown significantly reversed osteoporosis-related bone loss, as evidenced by improved trabecular parameters (BV/TV%, Tb.Th, Tb.N). Furthermore, we identified C/EBPα as a transcriptional activator of Cyp27a1, which mediates the regulatory effects of NPC1L1 on 27-OHC production. NPC1L1 inhibits osteogenesis and contributes to OP by promoting the Cyp27a1-dependent synthesis of 27-OHC through the transcription factor C/EBPα. Targeted modulation of the NPC1L1-C/EBPα-Cyp27a1-27-OHC axis could provide novel therapeutic strategies for OP.</p>\",\"PeriodicalId\":12093,\"journal\":{\"name\":\"FASEB bioAdvances\",\"volume\":\"7 6\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1096/fba.2025-00044\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FASEB bioAdvances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://faseb.onlinelibrary.wiley.com/doi/10.1096/fba.2025-00044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FASEB bioAdvances","FirstCategoryId":"1085","ListUrlMain":"https://faseb.onlinelibrary.wiley.com/doi/10.1096/fba.2025-00044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了胆固醇转运蛋白NPC1L1如何独立于其转运功能,通过胆固醇代谢调节成骨分化。我们还探讨了NPC1L1在骨质疏松症(OP)中的作用,重点关注下游的C/EBPα/ cyp27a1 /27-羟基胆固醇(27-OHC)轴。高通量RNA测序和生物信息学分析发现NPC1L1是骨生成的关键调节因子。采用成骨细胞系(C3H10和C2C12)进行成骨分化实验、茜素红S和ALP染色、western blot分析和qRT-PCR。此外,我们还建立了卵巢切除(OVX)诱导的OP小鼠模型来验证其体内效应。通过elisa、染色质免疫沉淀(ChIP-qPCR)和救援实验验证NPC1L1、Cyp27a1、27-OHC生成和转录因子C/EBPα之间的功能相互作用。在成骨过程中,NPC1L1表达下调,其下调可显著增强成骨分化、增殖和迁移。在分子水平上,NPC1L1独立于其转运功能促进胆固醇代谢,通过增加Cyp27a1的表达导致27-OHC水平升高。27-OHC升高通过诱导氧化应激和成骨生物标志物(ALP、OPN、OSX和OCN)的下调抑制成骨。在OVX小鼠中,NPC1L1敲低可显著逆转骨质疏松相关的骨质流失,这可以通过改善小梁参数(BV/TV%, Tb。Th, Tb.N)。此外,我们发现C/EBPα是Cyp27a1的转录激活因子,Cyp27a1介导NPC1L1对27-OHC产生的调节作用。NPC1L1通过转录因子C/EBPα促进cyp27a1依赖性27-OHC的合成,从而抑制成骨并促进OP。靶向调节NPC1L1-C/EBPα-Cyp27a1-27-OHC轴可能为OP提供新的治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

NPC1L1 Drives Osteoporosis by Activating the C/EBPα/Cyp27a1/27-Hydroxycholesterol Axis: A Novel Therapeutic Target for Bone Loss

NPC1L1 Drives Osteoporosis by Activating the C/EBPα/Cyp27a1/27-Hydroxycholesterol Axis: A Novel Therapeutic Target for Bone Loss

NPC1L1 Drives Osteoporosis by Activating the C/EBPα/Cyp27a1/27-Hydroxycholesterol Axis: A Novel Therapeutic Target for Bone Loss

NPC1L1 Drives Osteoporosis by Activating the C/EBPα/Cyp27a1/27-Hydroxycholesterol Axis: A Novel Therapeutic Target for Bone Loss

NPC1L1 Drives Osteoporosis by Activating the C/EBPα/Cyp27a1/27-Hydroxycholesterol Axis: A Novel Therapeutic Target for Bone Loss

NPC1L1 Drives Osteoporosis by Activating the C/EBPα/Cyp27a1/27-Hydroxycholesterol Axis: A Novel Therapeutic Target for Bone Loss

This study investigated how NPC1L1, a cholesterol transporter, regulates osteogenic differentiation through cholesterol metabolism independently of its transport function. We also explored the role of NPC1L1 in osteoporosis (OP), focusing on the downstream C/EBPα/Cyp27a1/27-hydroxycholesterol (27-OHC) axis. High-throughput RNA sequencing and bioinformatics analysis identified NPC1L1 as a key regulator of osteogenesis. Osteogenic differentiation assays, Alizarin Red S and ALP staining, western blot analysis, and qRT-PCR were performed using osteoblast cell lines (C3H10 and C2C12). In addition, an ovariectomy (OVX)-induced mouse model of OP was established to validate the in vivo effects. ELISAs, chromatin immunoprecipitation (ChIP–qPCR), and rescue experiments were conducted to verify the functional interactions among NPC1L1, Cyp27a1, 27-OHC production, and the transcription factor C/EBPα. NPC1L1 expression was downregulated during osteogenesis, and its knockdown significantly enhanced osteogenic differentiation, proliferation, and migration. At the molecular level, NPC1L1 promoted cholesterol metabolism independently of its transport function, resulting in elevated 27-OHC levels through increased expression of Cyp27a1. Elevated 27-OHC suppressed osteogenesis through the induction of oxidative stress and the downregulation of osteogenic biomarkers (ALP, OPN, OSX, and OCN). In OVX mice, NPC1L1 knockdown significantly reversed osteoporosis-related bone loss, as evidenced by improved trabecular parameters (BV/TV%, Tb.Th, Tb.N). Furthermore, we identified C/EBPα as a transcriptional activator of Cyp27a1, which mediates the regulatory effects of NPC1L1 on 27-OHC production. NPC1L1 inhibits osteogenesis and contributes to OP by promoting the Cyp27a1-dependent synthesis of 27-OHC through the transcription factor C/EBPα. Targeted modulation of the NPC1L1-C/EBPα-Cyp27a1-27-OHC axis could provide novel therapeutic strategies for OP.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
FASEB bioAdvances
FASEB bioAdvances Multiple-
CiteScore
5.40
自引率
3.70%
发文量
56
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信