Giuseppe Muscogiuri, Nicola Pegoraro, Alberto Cossu, Alessandro Caruso, Davide Casartelli, Francesco Severi, Gabrielle Gershon, Marly van Assen, Carlo N De Cecco, Marco Guglielmo, Tommaso D'Angelo, Luca Saba, Riccardo Cau, Paolo Marra, Aldo Carnevale, Melchiore Giganti, Sandro Sironi
{"title":"从获得到预后:人工智能在缺血性心肌病心脏磁共振成像评价中的作用","authors":"Giuseppe Muscogiuri, Nicola Pegoraro, Alberto Cossu, Alessandro Caruso, Davide Casartelli, Francesco Severi, Gabrielle Gershon, Marly van Assen, Carlo N De Cecco, Marco Guglielmo, Tommaso D'Angelo, Luca Saba, Riccardo Cau, Paolo Marra, Aldo Carnevale, Melchiore Giganti, Sandro Sironi","doi":"10.1111/echo.70201","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Acute and chronic ischemic cardiomyopathy (ICM) still represents a leading cause of morbidity and mortality. Cardiac magnetic resonance (CMR) imaging plays a central role in the diagnosis and management of ICM, offering detailed visualization of cardiac structures and function. The evolving role of artificial intelligence (AI) in enhancing CMR exams, from acquisition to prognosis, is rapidly expanding in clinical practice, particularly in CMR of patients with ICM, emphasizing the integration of AI algorithms to optimize imaging workflows in standard protocols. Advanced AI models enable more efficient and faster image acquisition, reducing artifacts and enhancing accuracy, even offering free-breathing sequences. In post-processing, AI allows for the segmentation and quantification of cardiac parameters, facilitating precise assessment of volumes, myocardial scarring, and perfusion abnormalities, which are critical parameters in ICM. Moreover, AI-driven analysis provides robust prognostic insights by predicting adverse outcomes, such as heart failure and arrhythmias, through comprehensive data integration and pattern recognition. Looking forward, the future of AI in CMR promises further advancements in personalized medicine, with AI algorithms continually improving in accuracy and clinical applicability. This review will analyze the role of AI in increasing diagnostic accuracy, optimizing workflows, and improving prognosis in patients with ICM.</p>\n </div>","PeriodicalId":50558,"journal":{"name":"Echocardiography-A Journal of Cardiovascular Ultrasound and Allied Techniques","volume":"42 6","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From Acquisition to Prognosis: The Role of AI in Cardiac Magnetic Resonance Imaging Evaluation of Ischemic Cardiomyopathy\",\"authors\":\"Giuseppe Muscogiuri, Nicola Pegoraro, Alberto Cossu, Alessandro Caruso, Davide Casartelli, Francesco Severi, Gabrielle Gershon, Marly van Assen, Carlo N De Cecco, Marco Guglielmo, Tommaso D'Angelo, Luca Saba, Riccardo Cau, Paolo Marra, Aldo Carnevale, Melchiore Giganti, Sandro Sironi\",\"doi\":\"10.1111/echo.70201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Acute and chronic ischemic cardiomyopathy (ICM) still represents a leading cause of morbidity and mortality. Cardiac magnetic resonance (CMR) imaging plays a central role in the diagnosis and management of ICM, offering detailed visualization of cardiac structures and function. The evolving role of artificial intelligence (AI) in enhancing CMR exams, from acquisition to prognosis, is rapidly expanding in clinical practice, particularly in CMR of patients with ICM, emphasizing the integration of AI algorithms to optimize imaging workflows in standard protocols. Advanced AI models enable more efficient and faster image acquisition, reducing artifacts and enhancing accuracy, even offering free-breathing sequences. In post-processing, AI allows for the segmentation and quantification of cardiac parameters, facilitating precise assessment of volumes, myocardial scarring, and perfusion abnormalities, which are critical parameters in ICM. Moreover, AI-driven analysis provides robust prognostic insights by predicting adverse outcomes, such as heart failure and arrhythmias, through comprehensive data integration and pattern recognition. Looking forward, the future of AI in CMR promises further advancements in personalized medicine, with AI algorithms continually improving in accuracy and clinical applicability. This review will analyze the role of AI in increasing diagnostic accuracy, optimizing workflows, and improving prognosis in patients with ICM.</p>\\n </div>\",\"PeriodicalId\":50558,\"journal\":{\"name\":\"Echocardiography-A Journal of Cardiovascular Ultrasound and Allied Techniques\",\"volume\":\"42 6\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Echocardiography-A Journal of Cardiovascular Ultrasound and Allied Techniques\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/echo.70201\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Echocardiography-A Journal of Cardiovascular Ultrasound and Allied Techniques","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/echo.70201","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
From Acquisition to Prognosis: The Role of AI in Cardiac Magnetic Resonance Imaging Evaluation of Ischemic Cardiomyopathy
Acute and chronic ischemic cardiomyopathy (ICM) still represents a leading cause of morbidity and mortality. Cardiac magnetic resonance (CMR) imaging plays a central role in the diagnosis and management of ICM, offering detailed visualization of cardiac structures and function. The evolving role of artificial intelligence (AI) in enhancing CMR exams, from acquisition to prognosis, is rapidly expanding in clinical practice, particularly in CMR of patients with ICM, emphasizing the integration of AI algorithms to optimize imaging workflows in standard protocols. Advanced AI models enable more efficient and faster image acquisition, reducing artifacts and enhancing accuracy, even offering free-breathing sequences. In post-processing, AI allows for the segmentation and quantification of cardiac parameters, facilitating precise assessment of volumes, myocardial scarring, and perfusion abnormalities, which are critical parameters in ICM. Moreover, AI-driven analysis provides robust prognostic insights by predicting adverse outcomes, such as heart failure and arrhythmias, through comprehensive data integration and pattern recognition. Looking forward, the future of AI in CMR promises further advancements in personalized medicine, with AI algorithms continually improving in accuracy and clinical applicability. This review will analyze the role of AI in increasing diagnostic accuracy, optimizing workflows, and improving prognosis in patients with ICM.
期刊介绍:
Echocardiography: A Journal of Cardiovascular Ultrasound and Allied Techniques is the official publication of the International Society of Cardiovascular Ultrasound. Widely recognized for its comprehensive peer-reviewed articles, case studies, original research, and reviews by international authors. Echocardiography keeps its readership of echocardiographers, ultrasound specialists, and cardiologists well informed of the latest developments in the field.