基于几何配准的非结构化工厂环境下自主对接实时精确定位

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Sebastian Fernando Chinchilla Gutierrez;Manaru Watanabe;Masahiro Ooyama;Takayuki Yamada;Tomoaki Yamada;Naoto Toshiki;Satsuki Yamane;Jose Victorio Salazar Luces;Ankit A. Ravankar;Yasuhisa Hirata
{"title":"基于几何配准的非结构化工厂环境下自主对接实时精确定位","authors":"Sebastian Fernando Chinchilla Gutierrez;Manaru Watanabe;Masahiro Ooyama;Takayuki Yamada;Tomoaki Yamada;Naoto Toshiki;Satsuki Yamane;Jose Victorio Salazar Luces;Ankit A. Ravankar;Yasuhisa Hirata","doi":"10.1109/LRA.2025.3575646","DOIUrl":null,"url":null,"abstract":"In factory distribution processes, autonomous mobile robots must dock precisely at base stations. However, this task is challenging due to the dynamic and unstructured nature of factory environments, as well as the sparse point clouds caused by sensor occlusions and distance limitations. To address these challenges, we propose a geometric registration approach designed to handle sparse point clouds in changing, unstructured settings. Our method utilizes the Hough transform to detect lines, describes the point cloud based on the relationships between these lines, filters out lines that do not correspond to the geometric features of the target base station, and estimates the pose of both the station and the robot using global registration techniques. We evaluated our system in four typical factory scenarios across 72 trials. Results show the robot achieved docking accuracy within <inline-formula><tex-math>$\\pm$</tex-math></inline-formula>5.06 mm and <inline-formula><tex-math>$\\pm 1.11^{\\circ }$</tex-math></inline-formula>, with a 100% success rate in docking and correctly identifying the target cart from surrounding objects. This represents a 70% reduction in errors and an 86% increase in success rate compared to existing methods.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 7","pages":"7198-7205"},"PeriodicalIF":4.6000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-Time Geometric-Registration-Based Precision Localization for Autonomous Docking in Unstructured Factory Environment\",\"authors\":\"Sebastian Fernando Chinchilla Gutierrez;Manaru Watanabe;Masahiro Ooyama;Takayuki Yamada;Tomoaki Yamada;Naoto Toshiki;Satsuki Yamane;Jose Victorio Salazar Luces;Ankit A. Ravankar;Yasuhisa Hirata\",\"doi\":\"10.1109/LRA.2025.3575646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In factory distribution processes, autonomous mobile robots must dock precisely at base stations. However, this task is challenging due to the dynamic and unstructured nature of factory environments, as well as the sparse point clouds caused by sensor occlusions and distance limitations. To address these challenges, we propose a geometric registration approach designed to handle sparse point clouds in changing, unstructured settings. Our method utilizes the Hough transform to detect lines, describes the point cloud based on the relationships between these lines, filters out lines that do not correspond to the geometric features of the target base station, and estimates the pose of both the station and the robot using global registration techniques. We evaluated our system in four typical factory scenarios across 72 trials. Results show the robot achieved docking accuracy within <inline-formula><tex-math>$\\\\pm$</tex-math></inline-formula>5.06 mm and <inline-formula><tex-math>$\\\\pm 1.11^{\\\\circ }$</tex-math></inline-formula>, with a 100% success rate in docking and correctly identifying the target cart from surrounding objects. This represents a 70% reduction in errors and an 86% increase in success rate compared to existing methods.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"10 7\",\"pages\":\"7198-7205\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11020725/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11020725/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

在工厂配送过程中,自主移动机器人必须精确地停靠在基站。然而,由于工厂环境的动态性和非结构化性质,以及传感器遮挡和距离限制导致的稀疏点云,这项任务具有挑战性。为了解决这些挑战,我们提出了一种几何配准方法,旨在处理不断变化的非结构化设置中的稀疏点云。该方法利用霍夫变换检测直线,根据直线之间的关系描述点云,过滤掉不符合目标基站几何特征的直线,并使用全局配准技术估计基站和机器人的姿态。我们在四个典型的工厂场景中对系统进行了72次试验。结果表明,机器人在$\pm$5.06 mm和$\pm$ 1.11^{\circ}$范围内实现了对接精度,对接成功率为100%,并能正确识别目标车与周围物体。与现有方法相比,这意味着错误率降低了70%,成功率提高了86%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-Time Geometric-Registration-Based Precision Localization for Autonomous Docking in Unstructured Factory Environment
In factory distribution processes, autonomous mobile robots must dock precisely at base stations. However, this task is challenging due to the dynamic and unstructured nature of factory environments, as well as the sparse point clouds caused by sensor occlusions and distance limitations. To address these challenges, we propose a geometric registration approach designed to handle sparse point clouds in changing, unstructured settings. Our method utilizes the Hough transform to detect lines, describes the point cloud based on the relationships between these lines, filters out lines that do not correspond to the geometric features of the target base station, and estimates the pose of both the station and the robot using global registration techniques. We evaluated our system in four typical factory scenarios across 72 trials. Results show the robot achieved docking accuracy within $\pm$5.06 mm and $\pm 1.11^{\circ }$, with a 100% success rate in docking and correctly identifying the target cart from surrounding objects. This represents a 70% reduction in errors and an 86% increase in success rate compared to existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信