Thierry A. Meynard;Hugues Renaudineau;Polidoro S. Canales;Samir Kouro;Diego Concha;Ana M. Llor;Maurice Fadel;Henri Schneider
{"title":"具有双功率处理能力的无变压器分压DC-DC变换器","authors":"Thierry A. Meynard;Hugues Renaudineau;Polidoro S. Canales;Samir Kouro;Diego Concha;Ana M. Llor;Maurice Fadel;Henri Schneider","doi":"10.1109/OJIES.2025.3572429","DOIUrl":null,"url":null,"abstract":"The concept of partial power converters is promising since it might bring significant cost, weight, volume, and power losses reduction. However, most partial power converters presented in the literature include a high-frequency transformer to redirect power from one part of the circuit to another, which adds cost, weight, volume and losses, and cancels out most of the potential advantages introduced by the partiality concept. In this article two variants of a transformerless partial voltage converter capable of supplying twice the power of conventional converters are described and analyzed. These converters can be used for applications in which the load voltages can be split into several sub-voltages of similar characteristics, which makes it typically applicable to batteries, fuel cells, electrolyzers and LEDs. Two main conditions are required to use these topologies: first, the voltage across the load needs to be controlled in a limited range only, typically [50%;100%] or less, and second, it must be possible to split easily the load voltages in several smaller dc voltages. Nevertheless, these restrictions still allow a wide range of possible applications including electrochemical loads such as batteries, fuel cells, electrolyzers, and even PV systems. Their main properties are analyzed and confirmed by experimental results. The lack of transformer and the partial power processing capabilities of the topologies result in extremely high efficiencies of over 99%.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"6 ","pages":"927-937"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11010103","citationCount":"0","resultStr":"{\"title\":\"TransformerLess Partial Voltage DC–DC Converter With Double Power Processing Capacity\",\"authors\":\"Thierry A. Meynard;Hugues Renaudineau;Polidoro S. Canales;Samir Kouro;Diego Concha;Ana M. Llor;Maurice Fadel;Henri Schneider\",\"doi\":\"10.1109/OJIES.2025.3572429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The concept of partial power converters is promising since it might bring significant cost, weight, volume, and power losses reduction. However, most partial power converters presented in the literature include a high-frequency transformer to redirect power from one part of the circuit to another, which adds cost, weight, volume and losses, and cancels out most of the potential advantages introduced by the partiality concept. In this article two variants of a transformerless partial voltage converter capable of supplying twice the power of conventional converters are described and analyzed. These converters can be used for applications in which the load voltages can be split into several sub-voltages of similar characteristics, which makes it typically applicable to batteries, fuel cells, electrolyzers and LEDs. Two main conditions are required to use these topologies: first, the voltage across the load needs to be controlled in a limited range only, typically [50%;100%] or less, and second, it must be possible to split easily the load voltages in several smaller dc voltages. Nevertheless, these restrictions still allow a wide range of possible applications including electrochemical loads such as batteries, fuel cells, electrolyzers, and even PV systems. Their main properties are analyzed and confirmed by experimental results. The lack of transformer and the partial power processing capabilities of the topologies result in extremely high efficiencies of over 99%.\",\"PeriodicalId\":52675,\"journal\":{\"name\":\"IEEE Open Journal of the Industrial Electronics Society\",\"volume\":\"6 \",\"pages\":\"927-937\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11010103\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Industrial Electronics Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11010103/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11010103/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
TransformerLess Partial Voltage DC–DC Converter With Double Power Processing Capacity
The concept of partial power converters is promising since it might bring significant cost, weight, volume, and power losses reduction. However, most partial power converters presented in the literature include a high-frequency transformer to redirect power from one part of the circuit to another, which adds cost, weight, volume and losses, and cancels out most of the potential advantages introduced by the partiality concept. In this article two variants of a transformerless partial voltage converter capable of supplying twice the power of conventional converters are described and analyzed. These converters can be used for applications in which the load voltages can be split into several sub-voltages of similar characteristics, which makes it typically applicable to batteries, fuel cells, electrolyzers and LEDs. Two main conditions are required to use these topologies: first, the voltage across the load needs to be controlled in a limited range only, typically [50%;100%] or less, and second, it must be possible to split easily the load voltages in several smaller dc voltages. Nevertheless, these restrictions still allow a wide range of possible applications including electrochemical loads such as batteries, fuel cells, electrolyzers, and even PV systems. Their main properties are analyzed and confirmed by experimental results. The lack of transformer and the partial power processing capabilities of the topologies result in extremely high efficiencies of over 99%.
期刊介绍:
The IEEE Open Journal of the Industrial Electronics Society is dedicated to advancing information-intensive, knowledge-based automation, and digitalization, aiming to enhance various industrial and infrastructural ecosystems including energy, mobility, health, and home/building infrastructure. Encompassing a range of techniques leveraging data and information acquisition, analysis, manipulation, and distribution, the journal strives to achieve greater flexibility, efficiency, effectiveness, reliability, and security within digitalized and networked environments.
Our scope provides a platform for discourse and dissemination of the latest developments in numerous research and innovation areas. These include electrical components and systems, smart grids, industrial cyber-physical systems, motion control, robotics and mechatronics, sensors and actuators, factory and building communication and automation, industrial digitalization, flexible and reconfigurable manufacturing, assistant systems, industrial applications of artificial intelligence and data science, as well as the implementation of machine learning, artificial neural networks, and fuzzy logic. Additionally, we explore human factors in digitalized and networked ecosystems. Join us in exploring and shaping the future of industrial electronics and digitalization.