Ni、Mn、Mg不同金属掺杂ZnAl2O4的阳离子分布、光学和辐射屏蔽研究

IF 2.8 3区 物理与天体物理 Q3 CHEMISTRY, PHYSICAL
Zein K. Heiba , Noura M. Farag , Saif A. Mouhammad , Ali Badawi , Mohamed Bakr Mohamed
{"title":"Ni、Mn、Mg不同金属掺杂ZnAl2O4的阳离子分布、光学和辐射屏蔽研究","authors":"Zein K. Heiba ,&nbsp;Noura M. Farag ,&nbsp;Saif A. Mouhammad ,&nbsp;Ali Badawi ,&nbsp;Mohamed Bakr Mohamed","doi":"10.1016/j.radphyschem.2025.113036","DOIUrl":null,"url":null,"abstract":"<div><div>Nanocrystalline ZnAl<sub>2</sub>O<sub>4</sub> undoped and doped with different metals (Ni, Mn and Mg) has been prepared applying the solid-state reaction method. Analysis of synchrotron x-ray diffraction patterns revealed the formation of a major phase with a cubic spinel structure, <span><math><mrow><mi>F</mi><mspace></mspace><mi>d</mi><mover><mn>3</mn><mo>‾</mo></mover><mi>m</mi></mrow></math></span>, alongside tiny phases unobservable without synchrotron radiation. Incorporation of the dopant elements into the ZnAl<sub>2</sub>O<sub>4</sub> lattice is confirmed by FTIR and Raman spectroscopic analysis. Rietveld structural analysis revealed a partial inverse structure for the pure ZnAl<sub>2</sub>O<sub>4</sub> sample with an inversion parameter of 0.146 which increased upon doping with Mg or Ni but reduced upon doping with Mn. UV–Vis diffuse reflectance revealed a significant increase in absorption, especially in the visible region upon doping with Mn or Ni, with a substantial reduction in the optical bandgap from 4.0 eV to 1.62, 1.9 eV respectively. The reduction in the bandgap energies was confirmed by excitation and emission photoluminescence (PL) measurements. The PL intensity was almost totally quenched for samples containing Ni or Mn. The undoped and doped samples displayed violet-blue colors, with different intensities. At 0.015 MeV, the linear (LAC) and mass attenuation coefficient (MAC) values for undoped and doped ZnAl<sub>2</sub>O<sub>4</sub> samples with Ni, Mn, or Mg are (127.1, 233.0, 205.7, 169.0 cm<sup>−1</sup>) and (31.9, 58.1, 50.9, and 43.0 cm<sup>2</sup>/g), respectively. The half value layers (HVL) and tenth value layers (TVL) values decreased when ZnAl<sub>2</sub>O<sub>4</sub> was doped with either Ni, Mn or Mg at both low and high photon energy. ZnAl<sub>2</sub>O<sub>4</sub> doped with Ni exhibited the smallest mean free path (MFP) value throughout both lower and higher photon energy ranges. Compared to ZnAl<sub>2</sub>O<sub>4</sub>, the samples containing doped samples display elevated effective atomic number (Z<sub>eff</sub>) values. The impact of doping on the fast neutron removal cross-section (FNRCS), exposure buildup factor (EBF) and energy absorption buildup factor (EABF) parameters was also explored. The quenched intensity of PL emission and the reduction in the bandgap energy, obtained via Ni or Mn doping, signify that the samples are appropriate for photocatalytic applications.</div></div>","PeriodicalId":20861,"journal":{"name":"Radiation Physics and Chemistry","volume":"237 ","pages":"Article 113036"},"PeriodicalIF":2.8000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cations distribution, optical and radiation shielding investigations of ZnAl2O4 doped with different metals: Ni, Mn and Mg\",\"authors\":\"Zein K. Heiba ,&nbsp;Noura M. Farag ,&nbsp;Saif A. Mouhammad ,&nbsp;Ali Badawi ,&nbsp;Mohamed Bakr Mohamed\",\"doi\":\"10.1016/j.radphyschem.2025.113036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nanocrystalline ZnAl<sub>2</sub>O<sub>4</sub> undoped and doped with different metals (Ni, Mn and Mg) has been prepared applying the solid-state reaction method. Analysis of synchrotron x-ray diffraction patterns revealed the formation of a major phase with a cubic spinel structure, <span><math><mrow><mi>F</mi><mspace></mspace><mi>d</mi><mover><mn>3</mn><mo>‾</mo></mover><mi>m</mi></mrow></math></span>, alongside tiny phases unobservable without synchrotron radiation. Incorporation of the dopant elements into the ZnAl<sub>2</sub>O<sub>4</sub> lattice is confirmed by FTIR and Raman spectroscopic analysis. Rietveld structural analysis revealed a partial inverse structure for the pure ZnAl<sub>2</sub>O<sub>4</sub> sample with an inversion parameter of 0.146 which increased upon doping with Mg or Ni but reduced upon doping with Mn. UV–Vis diffuse reflectance revealed a significant increase in absorption, especially in the visible region upon doping with Mn or Ni, with a substantial reduction in the optical bandgap from 4.0 eV to 1.62, 1.9 eV respectively. The reduction in the bandgap energies was confirmed by excitation and emission photoluminescence (PL) measurements. The PL intensity was almost totally quenched for samples containing Ni or Mn. The undoped and doped samples displayed violet-blue colors, with different intensities. At 0.015 MeV, the linear (LAC) and mass attenuation coefficient (MAC) values for undoped and doped ZnAl<sub>2</sub>O<sub>4</sub> samples with Ni, Mn, or Mg are (127.1, 233.0, 205.7, 169.0 cm<sup>−1</sup>) and (31.9, 58.1, 50.9, and 43.0 cm<sup>2</sup>/g), respectively. The half value layers (HVL) and tenth value layers (TVL) values decreased when ZnAl<sub>2</sub>O<sub>4</sub> was doped with either Ni, Mn or Mg at both low and high photon energy. ZnAl<sub>2</sub>O<sub>4</sub> doped with Ni exhibited the smallest mean free path (MFP) value throughout both lower and higher photon energy ranges. Compared to ZnAl<sub>2</sub>O<sub>4</sub>, the samples containing doped samples display elevated effective atomic number (Z<sub>eff</sub>) values. The impact of doping on the fast neutron removal cross-section (FNRCS), exposure buildup factor (EBF) and energy absorption buildup factor (EABF) parameters was also explored. The quenched intensity of PL emission and the reduction in the bandgap energy, obtained via Ni or Mn doping, signify that the samples are appropriate for photocatalytic applications.</div></div>\",\"PeriodicalId\":20861,\"journal\":{\"name\":\"Radiation Physics and Chemistry\",\"volume\":\"237 \",\"pages\":\"Article 113036\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiation Physics and Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0969806X25005286\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation Physics and Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0969806X25005286","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

采用固相反应法制备了未掺杂不同金属(Ni、Mn、Mg)的纳米晶ZnAl2O4。同步加速器x射线衍射模式分析显示,形成了一个具有立方尖晶石结构的主要相,Fd3 - m,以及没有同步辐射无法观察到的微小相。FTIR和拉曼光谱分析证实了掺杂元素在ZnAl2O4晶格中的存在。Rietveld结构分析表明,纯ZnAl2O4样品具有部分反相结构,其反演参数为0.146,在Mg或Ni掺杂时增加,而在Mn掺杂时减少。在掺杂Mn或Ni后,紫外-可见漫反射的吸收显著增加,特别是在可见光区,光学带隙分别从4.0 eV大幅减小到1.62、1.9 eV。通过激发和发射光致发光(PL)测量证实了带隙能量的降低。含Ni或Mn样品的PL强度几乎完全淬灭。未掺杂和掺杂样品呈现紫蓝色,强度不同。在0.015 MeV下,未掺杂和掺杂Ni、Mn和Mg的ZnAl2O4样品的线性(LAC)和质量衰减系数(MAC)分别为(127.1、233.0、205.7、169.0 cm−1)和(31.9、58.1、50.9和43.0 cm2/g)。在低光子能量和高光子能量下掺杂Ni、Mn或Mg时,ZnAl2O4的半值层(HVL)和十值层(TVL)值均有所降低。在较低和较高的光子能量范围内,掺杂Ni的ZnAl2O4表现出最小的平均自由程(MFP)值。与ZnAl2O4相比,掺杂样品的有效原子序数(Zeff)值有所提高。探讨了掺杂对快中子去除截面(FNRCS)、暴露积累因子(EBF)和能量吸收积累因子(EABF)参数的影响。通过Ni或Mn掺杂获得的PL发射猝灭强度和带隙能量的降低表明该样品适合于光催化应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cations distribution, optical and radiation shielding investigations of ZnAl2O4 doped with different metals: Ni, Mn and Mg
Nanocrystalline ZnAl2O4 undoped and doped with different metals (Ni, Mn and Mg) has been prepared applying the solid-state reaction method. Analysis of synchrotron x-ray diffraction patterns revealed the formation of a major phase with a cubic spinel structure, Fd3m, alongside tiny phases unobservable without synchrotron radiation. Incorporation of the dopant elements into the ZnAl2O4 lattice is confirmed by FTIR and Raman spectroscopic analysis. Rietveld structural analysis revealed a partial inverse structure for the pure ZnAl2O4 sample with an inversion parameter of 0.146 which increased upon doping with Mg or Ni but reduced upon doping with Mn. UV–Vis diffuse reflectance revealed a significant increase in absorption, especially in the visible region upon doping with Mn or Ni, with a substantial reduction in the optical bandgap from 4.0 eV to 1.62, 1.9 eV respectively. The reduction in the bandgap energies was confirmed by excitation and emission photoluminescence (PL) measurements. The PL intensity was almost totally quenched for samples containing Ni or Mn. The undoped and doped samples displayed violet-blue colors, with different intensities. At 0.015 MeV, the linear (LAC) and mass attenuation coefficient (MAC) values for undoped and doped ZnAl2O4 samples with Ni, Mn, or Mg are (127.1, 233.0, 205.7, 169.0 cm−1) and (31.9, 58.1, 50.9, and 43.0 cm2/g), respectively. The half value layers (HVL) and tenth value layers (TVL) values decreased when ZnAl2O4 was doped with either Ni, Mn or Mg at both low and high photon energy. ZnAl2O4 doped with Ni exhibited the smallest mean free path (MFP) value throughout both lower and higher photon energy ranges. Compared to ZnAl2O4, the samples containing doped samples display elevated effective atomic number (Zeff) values. The impact of doping on the fast neutron removal cross-section (FNRCS), exposure buildup factor (EBF) and energy absorption buildup factor (EABF) parameters was also explored. The quenched intensity of PL emission and the reduction in the bandgap energy, obtained via Ni or Mn doping, signify that the samples are appropriate for photocatalytic applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Radiation Physics and Chemistry
Radiation Physics and Chemistry 化学-核科学技术
CiteScore
5.60
自引率
17.20%
发文量
574
审稿时长
12 weeks
期刊介绍: Radiation Physics and Chemistry is a multidisciplinary journal that provides a medium for publication of substantial and original papers, reviews, and short communications which focus on research and developments involving ionizing radiation in radiation physics, radiation chemistry and radiation processing. The journal aims to publish papers with significance to an international audience, containing substantial novelty and scientific impact. The Editors reserve the rights to reject, with or without external review, papers that do not meet these criteria. This could include papers that are very similar to previous publications, only with changed target substrates, employed materials, analyzed sites and experimental methods, report results without presenting new insights and/or hypothesis testing, or do not focus on the radiation effects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信